
z/OS

C/C++
Messages

GC09-4819-00

���

z/OS

C/C++
Messages

GC09-4819-00

���

Note!
Before using this information and the product it supports, be sure to read the information in “Notices” on page 193.

First Edition (October 2001)

This edition applies to Version 1 Release 2 Modification 0 of z/OS C/C++ (5694-A01) and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure that you use the correct edition for the level of
the program listed above. Also, ensure that you apply all necessary PTFs for the program.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. You can also browse the books on the World Wide Web by clicking on ″The
Library″ link on the z/OS home page. The web address for this page is
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM® Canada Ltd. Laboratory
Information Development
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario Canada
L67 1C7

If you send comments, include the title and order number of this book, and the page number or topic related to your
comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. About This Book . 1
z/OS C/C++ and Related Publications 2
Hardcopy Books . 6
Softcopy Books . 6
Softcopy Examples . 7
z/OS C/C++ on the World Wide Web 7

Where to find more information 8
Accessing licensed books on the Web. 8
Using LookAt to look up message explanations 8

Chapter 2. About IBM z/OS C/C++ 11
Changes for z/OS V1R2 . 11

Limitations of Enhanced ASCII 14
z/OS Language Environment Downward Compatibility 14

The C/C++ Compilers . 15
The C Language . 15
The C++ Language . 15
Common Features of the z/OS C and C++ Compilers 16
z/OS C Compiler Specific Features 17
z/OS C++ Compiler Specific Features 17

Class Libraries . 17
IBM Open Class Library Source 18

Utilities . 18
The Debug Tool . 19
IBM C/C++ Productivity Tools for OS/390 19
z/OS Language Environment . 20
About Prelinking, Linking, and Binding 21

Notes on the Prelinking Process 22
File Format Considerations 22
The Program Management Binder 23

z/OS UNIX System Services (z/OS UNIX) 23
z/OS C/C++ Applications with z/OS UNIX C/C++ Functions 25
Input and Output . 25

I/O Interfaces . 25
File Types. 26
Additional I/O Features . 27

The System Programming C Facility 27
Interaction with Other IBM Products 27
Additional Features of z/OS C/C++ 29

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 31
Return Codes . 31
Compiler Messages . 31

Chapter 4. Utility Messages 175
Other Return Codes and Messages 175
DSECT Utility Messages . 175

Return Codes . 175
Messages . 175

DLLRNAME Utility Messages 177
Return Codes . 177
Messages . 177

CXXFILT Utility Messages . 178

© Copyright IBM Corp. 1996, 2001 iii

Return Codes . 178
Messages . 178

Chapter 5. z/OS C/C++ Application Support Class Library and Collection
Class Library Version 5 Messages 181

Chapter 6. z/OS C/C++ USL I/O Stream Class and USL Complex
Mathematics Class Library Version 3 Messages 191

Notices . 193
Programming Interface Information 194
Trademarks. 194
Standards . 195

Bibliography . 197
z/OS . 197
z/OS C/C++ . 197
z/OS Language Environment 197
Assembler . 197
COBOL . 198
PL/I . 198
VS FORTRAN. 198
CICS . 198
DB2 . 198
IMS/ESA. 199
QMF . 199
DFSMS . 199

INDEX . 201

iv z/OS V1R2.0 C/C++ Messages

Chapter 1. About This Book

This edition of z/OS C/C++ Messages is intended for users of the IBM z/OS C/C++
compiler with the z/OS Language Environment® product. It provides you with
information on the compiler return codes, compiler messages, utility messages, IBM
Open Class® messages, and I/O Stream messages.

You may notice changes in the style and structure of some of the contents in this
book; for example, headings that use uppercase for the first letter of initial words
only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
books.

© Copyright IBM Corp. 1996, 2001 1

z/OS C/C++ and Related Publications
This section summarizes the content of the z/OS C/C++ publications and shows
where to find related information in other publications.

Table 1. z/OS C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

z/OS C/C++ Programming Guide,
SC09-4765

Guidance information for:
v C/C++ input and output
v Debugging z/OS C programs that use input/output
v Using linkage specifications in C++
v Combining C and assembler
v Creating and using DLLs
v Using threads in z/OS UNIX® applications
v Reentrancy
v Using the decimal data type in C and C++
v Handling exceptions, error conditions, and signals
v Optimizing code
v Optimizing your C/C++ code with Interprocedural Analysis
v Network communications under z/OS UNIX
v Interprocess communications using z/OS UNIX
v Structuring a program that uses C++ templates
v Using environment variables
v Using System Programming C facilities
v Library functions for the System Programming C facilities
v Using run-time user exits
v Using the z/OS C multitasking facility
v Using other IBM products with z/OS C/C++ (CICS, CSP, DWS, DB2®,

GDDM®, IMS™, ISPF, QMF)
v Internationalization: locales and character sets, code set conversion utilities,

mapping variant characters
v POSIX character set
v Code point mappings
v Locales supplied with z/OS C/C++
v Charmap files supplied with z/OS C/C++
v Examples of charmap and locale definition source files
v Converting code from coded character set IBM-1047
v Using built-in functions
v Programming considerations for z/OS UNIX C/C++

z/OS C/C++ User’s Guide, SC09-4767 Guidance information for:
v z/OS C/C++ examples
v Compiler options
v Binder options and control statements
v Specifying z/OS Language Environment run-time options
v Compiling, IPA Linking, binding, and running z/OS C/C++ programs
v Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code

Set and Locale, ar and make, BPXBATCH)
v Diagnosing problems
v Cataloged procedures and REXX EXECs supplied by IBM

2 z/OS V1R2.0 C/C++ Messages

Table 1. z/OS C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

C/C++ Language Reference,
SC09-4815

Reference information for:
v The C and C++ languages
v Lexical elements of z/OS C and z/OS C++
v Declarations, expressions, and operators
v Implicit type conversions
v Functions and statements
v Preprocessor directives
v C++ classes, class members, and friends
v C++ overloading, special member functions, and inheritance
v C++ templates and exception handling
v z/OS C and z/OS C++ compatibility

z/OS C/C++ Messages, GC09-4819 Provides error messages and return codes for the compiler, utilities, and IBM
Open Class Library. For the C/C++ run-time library messages, refer to z/OS
Language Environment Run-Time Messages, SA22-7566.

z/OS C/C++ Run-Time Library
Reference, SA22-7821

Reference information for:
v header files
v library functions

z/OS C Curses, SA22-7820 Reference information for:
v Curses concepts
v Key data types
v General rules for characters, renditions, and window properties
v General rules of operations and operating modes
v Use of macros
v Restrictions on block-mode terminals
v Curses functional interface
v Contents of headers
v The terminfo database

z/OS C/C++ Compiler and Run-Time
Migration Guide, GC09-4913

Guidance and reference information for:
v Common migration questions
v Application executable program compatibility
v Source program compatibility
v Input and output operations compatibility
v Class library migration considerations
v Changes between releases of z/OS
v C/370™ to current compiler migration
v Other migration considerations

IBM Open Class Library User’s Guide,
SC09-4811

Guidance information for:
v Using the Complex Mathematics Class Library: Review of complex

numbers, header files, constructing complex objects, mathematical
operators for complex, friend functions for complex, handling complex
mathematics errors

v Using the I/O Stream Class Library: Introduction, getting started, advanced
topics, and manipulators

v Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception handling,
problem solving, compatibility with previous releases, thread safety

v Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads
and protecting data, the IBM Open Class notification framework, Binary
Coded (Packed) Decimal classes, text and internationalization framework,
testing

Chapter 1. About This Book 3

Table 1. z/OS C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

IBM Open Class Library Reference,
SC09-4812

Reference information for:
v Complex Mathematics Class Library
v I/O Stream Class Library
v Collection Class Library
v Application Support Class Library

Debug Tool User’s Guide and
Reference, SC09-2137

Guidance and reference information for:
v Preparing to debug programs
v Debugging programs
v Using Debug Tool in different environments
v Language-specific information
v Debug Tool reference

Standard C++ Library Reference,
available on the z/OS C/C++ library
page on the World Wide Web

The documentation, which is available at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html covers using the
following three main components of the Standard C++ Library to write portable
C/C++ code that complies with the ISO standards:

v ISO Standard C Library

v ISO Standard C++ Library

v Standard Template Library (C++)

The ISO Standard C++ library consists of 51 required headers. These 51 C++
library headers (along with the additional 18 Standard C headers) constitute a
hosted implementation of the C++ library. Of these 51 headers, 13 constitute
the Standard Template Library, or STL.

APAR and BOOKS files (Shipped with
Program materials)

Partitioned data set CBC.SCCNDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the z/OS C/C++ licensed program, including:
v Isolating reportable problems
v Keywords
v Preparing an Authorized Program Analysis Report (APAR)
v Problem identification worksheet
v Maintenance on z/OS
v Late changes to z/OS C/C++ publications

Note: For complete and detailed information on linking and running with z/OS Language Environment and using the
z/OS Language Environment run-time options, refer to z/OS Language Environment Programming Guide, SA22-7561.
For complete and detailed information on using interlanguage calls, refer to z/OS Language Environment Writing
Interlanguage Applications, SA22-7563.

The following table lists the z/OS C/C++ and related publications. The table groups
the publications according to the tasks they describe.

Table 2. Publications by Task

Tasks Books

Planning, preparing, and migrating to z/OS
C/C++

v z/OS C/C++ Compiler and Run-Time Migration Guide, GC09-4913
v z/OS Language Environment Customization, SA22-7564
v z/OS Language Environment Run-Time Migration Guide,

GA22-7565
v z/OS UNIX System Services Planning, GA22-7800
v z/OS Planning for Installation, GA22-7504

Installing v z/OS Program Directory
v z/OS Planning for Installation, GA22-7504
v z/OS Language Environment Customization, SA22-7564

4 z/OS V1R2.0 C/C++ Messages

Table 2. Publications by Task (continued)

Tasks Books

Coding programs v z/OS C/C++ Run-Time Library Reference, SA22-7821
v C/C++ Language Reference, SC09-4815
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS Language Environment Concepts Guide, SA22-7567
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Programming Reference, SA22-7562
v IBM Open Class Library User’s Guide, SC09-4811
v IBM Open Class Library Reference, SC09-4812

Coding and binding programs with
interlanguage calls

v z/OS C/C++ Programming Guide, SC09-4765
v C/C++ Language Reference, SC09-4815
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Writing Interlanguage Applications,

SA22-7563
v z/OS DFSMS Program Management, SC27-1130

Compiling, binding, and running programs v z/OS C/C++ User’s Guide, SC09-4767
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Debugging Guide, GA22-7560
v z/OS DFSMS Program Management, SC27-1130

Compiling and binding applications in the z/OS
UNIX environment

v z/OS C/C++ User’s Guide, SC09-4767
v z/OS UNIX System Services User’s Guide, SA22-7801
v z/OS UNIX System Services Command Reference, SA22-7802
v z/OS DFSMS Program Management, SC27-1130

Debugging programs v README file
v Debug Tool User’s Guide and Reference, SC09-2137
v z/OS C/C++ User’s Guide, SC09-4767
v z/OS C/C++ Messages, GC09-4819
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Debugging Guide, GA22-7560
v z/OS Language Environment Run-Time Messages, SA22-7566
v z/OS UNIX System Services Messages and Codes, SA22-7807
v z/OS UNIX System Services User’s Guide, SA22-7801
v z/OS UNIX System Services Command Reference, SA22-7802
v z/OS UNIX System Services Programming Tools, SA22-7805
v z/OS Messages Database, available on the z/OS Library page on

the World Wide Web
(http://www.ibm.com/servers/eserver/zseries/zos/bkserv)

Using shells and utilities in the z/OS UNIX
environment

v z/OS C/C++ User’s Guide, SC09-4767
v z/OS UNIX System Services Command Reference, SA22-7802
v z/OS UNIX System Services Messages and Codes, SA22-7807

Using sockets library functions in the z/OS
UNIX environment

v z/OS C/C++ Run-Time Library Reference, SA22-7821

Using the ISO Standard C++ Library to write
portable C/C++ code that complies with ISO
standards

v Standard C++ Library Reference, available on the z/OS C/C++
library page on the World Wide Web
(http://www.ibm.com/software/ad/c390/czos/czosdocs.html)

Chapter 1. About This Book 5

Table 2. Publications by Task (continued)

Tasks Books

Porting a UNIX Application to z/OS v z/OS UNIX System Services Porting Guide

This guide contains useful information about supported header files
and C functions, sockets in z/OS UNIX, process management,
compiler optimization tips, and suggestions for improving the
application’s performance after it has been ported. The Porting
Guide is available as a PDF file which you can download, or as
web pages which you can browse, at the following web address:
http://www-
1.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html

Working in the z/OS UNIX System Services
Parallel Environment

v z/OS UNIX System Services Parallel Environment: Operation and
Use, SA22-7810

v z/OS UNIX System Services Parallel Environment: MPI
Programming and Subroutine Reference, SA22-7812

Performing diagnosis and submitting an
Authorized Program Analysis Report (APAR)

v z/OS C/C++ User’s Guide, SC09-4767
v CBC.SCCNDOC(APAR) on z/OS C/C++ product tape

Tuning Large C/C++ Applications on z/OS
UNIX System Services

v IBM Redbook called Tuning Large C/C++ Applications on z/OS
UNIX System Services, which is available at:
http://www.redbooks.ibm.com/abstracts/sg245606.html

C/C++ Applications on OS/390 UNIX v IBM Redbook called C/C++ Applications on OS/390 UNIX, which is
available at:
http://www.redbooks.ibm.com/abstracts/sg245992.html

Performance considerations for XPLINK v IBM Redbook called XPLink: OS/390® Extra Performance Linkage,
which is available at:
http://www.redbooks.ibm.com/abstracts/sg245991.html

Note: For information on using the prelinker, see the appendix on prelinking and linking z/OS C/C++ programs in
z/OS C/C++ User’s Guide. As of OS/390 Version 2 Release 4, this appendix contains information that was previously
in the chapter on prelinking and linking z/OS C/C++ programs in z/OS C/C++ User’s Guide. It also contains prelinker
information that was previously in z/OS C/C++ Programming Guide.

Hardcopy Books
The following z/OS C/C++ books are available in hardcopy:
v z/OS C/C++ Run-Time Library Reference, SA22-7821
v z/OS C/C++ User’s Guide, SC09-4767
v z/OS C/C++ Messages, GC09-4819
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS C Curses, SA22-7820
v z/OS C/C++ Compiler and Run-Time Migration Guide, GC09-4913
v Debug Tool User’s Guide and Reference, SC09-2137

You can purchase these books on their own, or as part of a set. You receive z/OS
C/C++ Compiler and Run-Time Migration Guide, GC09-4913 at no charge. Feature
code 8009 includes the remaining books.

Softcopy Books
The z/OS C/C++ publications are supplied in PDF and BookMaster® formats on the
following CD: z/OS Collection, SK3T-4269. They are also available at the following
Web site:
http://www.ibm.com/software/ad/c390/czos/czosdocs.html

6 z/OS V1R2.0 C/C++ Messages

To read a PDF file, use the Adobe Acrobat Reader. If you do not have the Adobe
Acrobat Reader, you can download it for free from the Adobe Web site:
http://www.adobe.com

To read a file in BookManager® format, use BookManager READ/MVS Version 1
Release 3 (5695-046) or the Library Reader™ for DOS, OS/2® or Windows®

supplied on the CD-ROMs containing BookManager books.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If you
know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web by clicking on "The Library"
link on the z/OS home page. The web address for this page is:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

Softcopy Examples
Most of the larger examples in the following books are available in
machine-readable form:
v C/C++ Language Reference, SC09-4815
v z/OS C/C++ User’s Guide, SC09-4767
v z/OS C/C++ Programming Guide, SC09-4765
v IBM Open Class Library User’s Guide, SC09-4811

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCCNSAM or the directory /usr/lpp/ioclib/sample. The labels have the form
CCNxyyy or CLBxyyy, where x refers to a publication:
v R and X refer to C/C++ Language Reference, SC09-4815
v G refers to z/OS C/C++ Programming Guide, SC09-4765
v U refers to z/OS C/C++ User’s Guide, SC09-4767

Examples labelled as CCNxyyy appear in C/C++ Language Reference, z/OS C/C++
Programming Guide, and z/OS C/C++ User’s Guide. Examples labelled as CLBxyyy
appear in the z/OS C/C++ User’s Guide. Additional IBM Open Class Samples are
provided as softcopy only. They can be found in the /usr/lpp/ioclib/sample
directory.

z/OS C/C++ on the World Wide Web
Additional information on z/OS C/C++ is available on the World Wide Web on the
z/OS C/C++ home page at:
http://www.ibm.com/software/ad/c390/czos

This page contains late-breaking information about the z/OS C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the z/OS C/C++ information library and the libraries of other z/OS elements
that are available on the Web. The z/OS C/C++ home page also contains samples
that you can download, and links to other related Web sites.

Chapter 1. About This Book 7

Where to find more information
Please see z/OS Information Roadmap for an overview of the documentation
associated with z/OS, including the documentation available for z/OS Language
Environment.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

8 z/OS V1R2.0 C/C++ Messages

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

Chapter 1. About This Book 9

10 z/OS V1R2.0 C/C++ Messages

Chapter 2. About IBM z/OS C/C++

The C/C++ feature of the IBM z/OS licensed program provides support for C and
C++ application development on the z/OS platform. The C/C++ feature is based on
the C/C++ for MVS/ESA™ product.

z/OS C/C++ includes:
v A C compiler (referred to as the z/OS C compiler)
v A C++ compiler (referred to as the z/OS C++ compiler)
v Support for a set of C++ class libraries that are available with the base z/OS

operating system
v Application Support Class and Collection Class Library source
v A mainframe interactive Debug Tool (optional)
v Performance Analyzer host component, which supports the IBM C/C++

Productivity Tools for OS/390 product
v A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX®, OS/400®,
VM/ESA®, and VSE/ESA™ operating systems. The AIX and OS/400 operating
systems also offer the C++ language.

Changes for z/OS V1R2
z/OS C/C++ has made the following performance and usability enhancements for
this release:

C++ Compiler Compliant with ISO C++ 1998 Standard
z/OS V1R2 C/C++ includes a C++ compiler which is fully compliant
with the ISO C++ 1998 Standard. This includes support for:

v namespaces and associated keywords namespace and using

v new type bool and associated keywords bool, true, and false

v new class member modifying keywords mutable and explicit

v new casts and associated keywords static_cast, dynamic_cast,
reinterpret_cast, and const_cast

v new template model and its associated keyword typename

v Run Time Type Identification (RTTI) and its associated keyword
typeid. The C++ compiler does not support exported template
definitions, nor does it allow overloading functions in ways that
differ only in the linkage type of function pointer parameters.

v The C++ Standard Library, including the Standard Template
Library (STL) and other library features of ISO C++ 1998

The associated run-time library DLLs use the XPLINK convention
and require an XPLINK-capable run-time environment.
Environments such as CICS will require the continued use of the
previous environment and be compiled with the NOXPLINK and
TARGET(OSV2R10) options.

Note: The OS/390 V2R10 C/C++ compiler is being shipped along
with the new z/OS V1R2 C/C++ compiler. Existing C++
programs may need source code changes in order to
conform to the ISO C++ 1998 Standard. If you do not require
the 1998 Standard, you can use the OS/390 V2R10 compiler

© Copyright IBM Corp. 1996, 2001 11

to avoid these source changes, but you will not get the
benefits of the new features introduced in the new compiler.

IBM Open Class Library
The IBM Open Class (IOC) is a library of C++ classes. z/OS V1R2
includes a new level of IOC, which is consistent with that shipped in
VisualAge® C++ for AIX Version 5.0. This is intended to ease
porting from AIX, but is not intended for use in new development.
Support will be withdrawn in a future release. New application
development involving C++ classes should make use of the C++
Standard Library instead of the IBM Open Class Library.

Large File Support in Standard I/O Stream Class Library
Large file support enables access to hierarchical file system (HFS)
files that are over 2 GB in size, using the C++ Standard Library.

IPA Support for XPLINK
This feature combines the highest optimization level (IPA) for z/OS
C/C++ with its high performance linkage (XPLINK).

v XPLINK is a function call linkage introduced in OS/390 V2R10
which offers significant performance increments when used in an
environment of frequent calls between small functions. XPLINK
makes subroutine calls more efficient by removing non-essential
instructions from the main path. When all functions are compiled
with the XPLINK option, function pointers can be used without
restriction.

v InterProcedural Analysis (IPA) was introduced in OS/390 V1R2
C. IPA performs optimizations across compilation units, which
exposes more optimization opportunities. This complements the
traditional approach of optimizing within compilation units.

Enhanced ASCII Support
z/OS V1R2 C/C++ provides enhanced ASCII support that simplifies
porting of applications from ASCII platforms. It provides the ability
to:

v Build ASCII-based applications by producing object code with
ASCII string literals and character constants, and a flag that
identifies applications as ASCII or EBCDIC

v Use Unicode-based wide characters (wchar_t) in ASCII-based
applications

v Transparently call native ASCII run-time library functions from
ASCII-based applications

v Process user-defined ASCII multi-byte code pages with
user-supplied code set related methods

v Create ASCII-based locale objects, which allow processing of
ASCII data natively at run time

The ability to produce code that contains ASCII string literals and
character constants allows ASCII-dependent logic to continue
working as on ASCII platforms thus eliminating the need to find all
such places in the code and convert them to EBCDIC.

New Compiler Options
z/OS V1R2 C/C++ introduces the following new compiler options:

v ASCII

v BITFIELD

12 z/OS V1R2.0 C/C++ Messages

v CHARS

v ENUM

v HALTONMSG (C++ only)

v KEYWORD (C++ only)

v LANGLVL (added new suboptions)

v OBJECTMODEL (C++ only)

v RTTI (C++ only)

v STATICINLINE (C++ only)

v SUPPRESS (C++ only)

v TEMPLATERECOMPILE (C++ only)

v TEMPLATEREGISTRY (C++ only)

v TMPLPARSE (C++ only)

Compiler Option Whose Syntax Has Been Changed for C++ to Match C

v INLINE: The default inline behavior has changed. In previous
versions of C++, the threshold and limit values were 100 and
2000, respectively. These are now 100 and 1000.

Compiler Options That Are No Longer Supported
In z/OS V1R2 C/C++ the following compiler options are no longer
supported:

v DECK: The replacement for DECK functionality that routes output
to DD: SYSPUNCH is to use OBJECT(DD:SYSPUNCH).
Alternatively, you can replace all references to DD:SYSPUNCH in
your JCL with DD:SYSLIN, and use the OBJECT option.

v GENPCH

v HWOPTS: use ARCHITECTURE instead

v LANGLVL(COMPAT)

v OMVS: use OE instead

v SRCMSG

v SYSLIB: use SEARCH instead

v SYSPATH: use SEARCH instead

v TARGET(OSV1R2 | OSV1R3 | OSV2R4 | OSV2R5)

v USEPCH

v USERLIB: use LSEARCH instead

v USERPATH: use LSEARCH instead

Compiler Option Whose Default Value Has Changed
In z/OS V1R2 the default setting for the following compiler options
has changed:

v Default is now DIGRAPH, both for C and C++

v Default is now INFO(LAN) for C++

v Default is now ROSTRING, both for C and C++

Built-in Functions for Floating-Point and Other Hardware Instructions
z/OS V1R2 has new built-in functions for floating-point and other
hardware instructions, making these accessible to C/C++ programs.
For information on using these built-in functions, see the appendix
on built-in functions in z/OS C/C++ Programming Guide.

Chapter 2. About IBM z/OS C/C++ 13

Limitations of Enhanced ASCII
This section explains under what conditions you can use Enhanced ASCII.

v A subset of C headers and functions is provided in ASCII. For more information,
see z/OS C/C++ Run-Time Library Reference.

v The only way to get to the ASCII version of functions and the external variables
environ and tzname is to use the appropriate IBM header files.

v ASCII applications may read, but not update, environment variables using the
external variable. Updates to the environment variables using environ in an
ASCII application cause unpredictable results and may result in an abend.
Language Environment maintains two equivalent arrays of environment variables
when running an ASCII application, one with EBCDIC encodings and the other
with ASCII encodings. All ASCII compile units that use the environ external
variable must include <stdlib.h> so that environ can be mapped to access the
ASCII encoded environment strings. If <stdlib.h> is not included, environ will
refer to the EBCDIC representation of the environment variable strings.

Enhanced ASCII provides limited conversion of ASCII to EBCDIC, and EBCDIC to
ASCII. The character set or alphabet that is associated with any locale consists of
the following:

v A common, XPG4-defined subset of characters such as POSIX portable
characters

v A unique, locale-specific subset of characters such as NLS characters

The conversion only applies to the portable subset of characters that are associated
with a locale. Only the EBCDIC IBM-1047 encoding of portable characters is
supported.

You might encounter unexpected results in the following situations:

v If Enhanced ASCII applications are run in locales that contain non-Latin Alphabet
Number 1 NLS characters, C-RTL functions might copy some of the locale’s
non-Latin 1 NLS characters into buffers that the application is writing to stdout or
another HFS files. The non-Latin Alphabet Number 1 NLS characters would then
cause problems during automatic conversion.

v Language Environment applications must select non-English message files. If
your NATLANG run-time option is not UEN or ENU, messages directed to the
Language Environment message file are converted to ASCII. These messages
would cause problems during automatic conversion to EBCDIC.

z/OS Language Environment Downward Compatibility
z/OS Language Environment provides downward compatibility support. Assuming
that you have met the required programming guidelines and restrictions, described
in the z/OS Language Environment Programming Guide, this support enables you
to develop applications on higher release levels of z/OS for use on platforms that
are running lower release levels of z/OS or OS/390. In C and C++, downward
compatibility support is provided through the C/C++ TARGET compiler option. See
z/OS C/C++ User’s Guide for details on this compiler option.

For example, a company may use z/OS V1R2 with Language Environment on a
development system where applications are coded, link-edited, and tested, while
using any supported lower release of OS/390 or z/OS Language Environment on
their production systems where the finished application modules are used.

Downward compatibility support is not the roll-back of new function to prior releases
of the operating system. Applications developed that exploit the downward

14 z/OS V1R2.0 C/C++ Messages

compatibility support must not use any Language Environment function that is
unavailable on the lower release of OS/390 or z/OS where the application will be
used.

The downward compatibility support includes toleration PTFs for lower releases of
OS/390 or z/OS to assist in diagnosing applications that do not meet the
programming requirements for this support. (Specific PTF numbers can be found in
the PSP buckets.)

The downward compatibility support provided by z/OS Language Environment and
by the toleration PTFs does not change Language Environment’s upward
compatibility. That is, applications coded and link-edited with one release of OS/390
or z/OS Language Environment will continue to run on later releases of OS/390 or
z/OS Language Environment without the need to recompile or re-link edit the
application, independent of the downward compatibility support.

Downward compatibility is supported in earlier releases of OS/390 C/C++ (from
Version 2 Release 6), but in OS/390 V2R6, the user is required to copy header files
and link-edit SYSLIB data sets from the deployment release of OS/390. Starting with
OS/390 Version 2 Release 10, the current level header files and SYSLIB can be
used (the user no longer has to copy header files and SYSLIB data sets from the
deployment release).

The C/C++ Compilers
The following sections describe the C and C++ languages and the z/OS C/C++
compilers.

The C Language
The C language is a general purpose, versatile, and functional programming
language that allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language
The C++ language is based on the C language and includes all of the advantages
of C listed above. In addition, C++ also supports object-oriented concepts, type
genericity or templates, and an extensive library. For a detailed description of the
differences between z/OS C++ and z/OS C, refer to the C/C++ Language
Reference.

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

Chapter 2. About IBM z/OS C/C++ 15

Common Features of the z/OS C and C++ Compilers
The C and C++ compilers, when used with z/OS Language Environment, offer
many features to help your work:

v Optimization support:

– Algorithms to take advantage of the S/390® architecture to get better
optimization for speed and use of computer resources through the OPTIMIZE
and IPA compiler options.

– The OPTIMIZE compiler option, which instructs the compiler to optimize the
machine instructions it generates to produce faster-running object code, which
improves application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

v DLLs (dynamic link libraries) to share parts among applications or parts of
applications, and dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use
a definition located in another executable at run time. You can use both
load-on-reference and load-on-demand DLLs. When your program refers to a
function or variable which resides in a DLL, z/OS C/C++ generates code to load
the DLL and access the functions and variables within it. This is called
load-on-reference. Alternatively, your program can use z/OS C library functions to
load a DLL and look up the address of functions and variables within it. This is
called load-on-demand. Your application code explicitly controls load-on-demand
DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve system
memory usage. DLLs also offer more flexibility for building, packaging, and
redistributing applications.

v Full program reentrancy

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. z/OS C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with z/OS or the z/OS Language
Environment prelinker and program management binder. The z/OS C++ compiler
always ensures that C++ programs are reentrant.

v INLINE compiler option

Additional optimization capabilities are available with the INLINE compiler option.

v Locale-based internationalization support derived from IEEE POSIX 1003.2-1992
standard. Also derived from X/Open CAE Specification, System Interface
Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to use
locales to specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,
PL/1, compiled Java™, and Fortran, to enable programmers to integrate z/OS
C/C++ code with existing applications.

v Exploitation of z/OS and z/OS UNIX technology.

z/OS UNIX is an IBM implementation of the open operating system environment,
as defined in the XPG4 and POSIX standards.

v Support for the following standards at the system level:

16 z/OS V1R2.0 C/C++ Messages

– A subset of the extended multibyte and wide character functions as defined by
Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

– ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), as applicable to the S/390 environment.

– X/Open CAE Specification, Network Services, Issue 4

v Year 2000 support

v Support for the Euro currency

z/OS C Compiler Specific Features
In addition to the features common to z/OS C and C++, the z/OS C compiler
provides you with the following capabilities:

v The ability to write portable code that supports the following standards:

– All elements of the ISO standard ISO/IEC 9899:1990 (E)

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Language Issue 3, Common Usage C

– FIPS-160

v System programming capabilities, which allow you to use z/OS C in place of
assembler

v Extensions of the standard definitions of the C language to provide programmers
with support for the z/OS environment, such as fixed-point (packed) decimal data
support

z/OS C++ Compiler Specific Features
In addition to the features common to z/OS C and C++, the z/OS C++ compiler
supports the International Standard for the C++ Programming Language (ISO/IEC
14882:1998) specification.

Class Libraries
z/OS V1R2 C/C++ provides the following class libraries, which are all thread-safe:

v C++ Standard Library, including the Standard Template Library (STL) and other
library features of ISO C++ 1998

v IBM Open Class Library for z/OS V1R2

v IBM Open Class Library for OS/390 V2R10

Refer to z/OS C/C++ Compiler and Run-Time Migration Guide and IBM Open Class
Library User’s Guide for more details on the components of these libraries.

For new code and the most portable code you will want to use the new C++
Standard Library, which includes the following:

v The C++ Standard I/O Stream Library for performing input and output (I/O)
operations

Chapter 2. About IBM z/OS C/C++ 17

v The C++ Standard Complex Mathematics Library for manipulating complex
numbers

v The Standard Template Library (STL) which is composed of C++ template-based
algorithms, container classes, iterators, localization objects, and the string class

The IBM Open Class (IOC) is a comprehensive library of C++ classes that you can
use to develop applications. z/OS V1R2 includes a new level of IOC which is
consistent with that shipped in VisualAge C++ for AIX V5.0. This is intended to ease
porting from AIX, but is not intended for use in new development. Support will be
withdrawn in a future release.

The z/OS V1R2 IBM Open Class Library includes:

v The Application Support Class Library which provides the basic abstractions that
are needed during the creation of most C++ applications, including String, Date,
Time, and Decimal. The Application Support Class Library corresponds to the
IOC member in the data sets.

v The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. The Collection Class
Library provides developers with a consistent set of building blocks from which
they can derive application objects. The library design exploits features of the
C++ language such as exception handling and template support. The Collection
Class Library corresponds to the COLL member in the data sets.

The z/OS V1R2 IBM Open Class enables you to choose between the C++ Standard
I/O Stream and Complex Mathematics libraries, and the UNIX Systems Laboratories
C++ Language System Release (USL) I/O Stream and Complex Mathematics
libraries.

The OS/390 V2R10 IBM Open Class Library and USL class libraries include the
following:

v The USL I/O Stream Class Library (corresponds to the IOSTREAM member in
the data sets)

v The USL Complex Mathematics Class Library (corresponds to the COMPLEX
member in the data sets)

v The Application Support Class Library (corresponds to the APPSUPP member in
the data sets)

v The Collection Class Library (corresponds to the COLLECT member in the data
sets)

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the z/OS C/C++ compiler
features or to use the DLL Rename Utility.

IBM Open Class Library Source
The IBM Open Class Library Source consists of the following:

v Application Support Class Library source code

v Collection Class Library source code

Utilities
The z/OS C/C++ compilers provide the following utilities:

v The CXXFILT utility to map z/OS C++ mangled names to the original source.

18 z/OS V1R2.0 C/C++ Messages

v The DSECT Conversion Utility to convert descriptive assembler DSECTs into
z/OS C/C++ data structures.

v The localedef utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use.

v The makedepend utility to derive all dependencies in the source code and write
these into the makefile for the make command to determine which source files to
recompile, whenever a dependency has changed. This frees the user from
manually monitoring such changes in the source code.

z/OS Language Environment provides the following utilities:

v The Object Library Utility (C370LIB) to update partitioned data set (PDS and
PDSE) libraries of object modules and Interprocedural Analysis (IPA) object
modules.

v The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged. The DLL Rename Utility does not
support XPLINK.

v The prelinker which combines object modules that comprise a z/OS C/C++
application, to produce a single object module. The prelinker supports only object
and extended object format input files, and does not support GOFF.

The Debug Tool
z/OS C/C++ supports program development by using the Debug Tool. This
optionally available tool allows you to debug applications in their native host
environment, such as CICS/ESA®, IMS/ESA®, DB2, and so on. The Debug Tool
provides the following support and function:
v Step mode
v Breakpoints
v Monitor
v Frequency analysis
v Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation, or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

Note: You can also use the dbx shell command to debug programs, as described in
z/OS UNIX System Services Command Reference.

For further information, see “IBM C/C++ Productivity Tools for OS/390”.

IBM C/C++ Productivity Tools for OS/390
With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your
z/OS application development environment out to the workstation, while remaining
close to your familiar host environment. IBM C/C++ Productivity Tools for OS/390
includes the following workstation-based tools to increase your productivity and
code quality:

v A Performance Analyzer to help you analyze, understand, and tune your C and
C++ applications for improved performance

Chapter 2. About IBM z/OS C/C++ 19

v A Distributed Debugger that allows you to debug C or C++ programs from the
convenience of the workstation

v A workstation-based editor to improve the productivity of your C and C++ source
entry

v Advanced online help, with full text search and hypertext topics as well as
printable, viewable, and searchable Portable Document Format (PDF) documents

In addition, IBM C/C++ Productivity Tools for OS/390 includes the following host
components:

v Debug Tool

v Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and
analyze a profile of the execution of your host z/OS C or C++ application. Use this
information to time and tune your code so that you can increase the performance of
your application.

Use the Distributed Debugger to debug your z/OS C or C++ application remotely
from your workstation. Set a break point with the simple click of the mouse. Use the
windowing capabilities of your workstation to view multiple segments of your source
and your storage, while monitoring a variable at the same time.

Use the workstation-based editor to quickly develop C and C++ application code
that runs on z/OS. Context-sensitive help information is available to you when you
need it.

References to Performance Analyzer in this document refer to the IBM OS/390
Performance Analyzer included in the C/C++ Productivity Tools for OS/390 product.

z/OS Language Environment
z/OS C/C++ exploits the C/C++ run-time environment and library of run-time
services available with z/OS Language Environment (formerly OS/390 Language
Environment, Language Environment for MVS™ & VM, Language Environment/370
and LE/370).

z/OS Language Environment consists of four language-specific run-time libraries,
and Base Routines and Common Services, as shown below. z/OS Language
Environment establishes a common run-time environment and common run-time
services for language products, user programs, and other products.

20 z/OS V1R2.0 C/C++ Messages

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The z/OS Language Environment provides a variety of services:

v Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. z/OS C/C++ contains
these functions within a library of callable routines, and include interfaces to
operating system functions and a variety of other commonly used functions.

v Run-time options that help in the execution, performance, and diagnosis of your
application.

v Access to operating system services; z/OS UNIX services are available to an
application programmer or program through the z/OS C/C++ language bindings.

v Access to language-specific library routines, such as the z/OS C/C++ library
functions.

About Prelinking, Linking, and Binding
When describing the process to build an application, this document refers to the
bind step.

Normally the Program Management Binder is used to perform the bind step.
However, in many cases the prelink and link steps can be used in place of the bind
step. When they cannot be substituted, and the Program Management binder alone
must be used, it will be stated. For more information on the bind, prelink, and link
steps, refer to z/OS C/C++ User’s Guide.

The terms bind and link have multiple meanings.

v With respect to building an application:

In both instances, the program management binder is performing the actual
processing of converting the object file(s) into the application executable module.

Object files with longname symbols, reentrant writable static symbols, and
DLL-style function calls require additional processing to build global data for the
application.

The term link refers to the case where the binder does not perform this additional
processing, due to one of the following:

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in z/OS Language Environment

Chapter 2. About IBM z/OS C/C++ 21

– The processing is not required, because none of the object files in the
application use constructed reentrancy, use long names, are DLL or are C++.

– The processing is handled by executing the prelinker step before running the
binder.

The term bind refers to the case where the binder is required to perform this
processing.

v With respect to executing code in an application:

The linkage definition refers to the program call linkage between program
functions and methods. This includes the passing of control and parameters.
Refer to C/C++ Language Reference for more information on linkage
specification.

Some platforms have a single linkage convention. S/390 has a number of linkage
conventions, including standard operating system linkage, Extra Performance
Linkage (XPLINK), and different non-XPLINK linkage conventions for C and C++.

Notes on the Prelinking Process
Note that you cannot use the prelinker if you are using the XPLINK or GOFF compiler
options. Also, IBM recommends using the binder without the prelinker whenever
possible.

Prior to OS/390 V2R4 C/C++, the z/OS C/C++ User’s Guide showed how to use the
prelinker and linkage editor. Sections throughout the book discussed concepts of
prelinking and linking. The prelinker was designed to process long names and
support constructed reentrancy in earlier versions of the C complier on the MVS
and OS/390 operating systems. The prelinker, shipped with the z/OS C/C++
run-time library, provides output that is compatible with the linkage editor, that is
shipped with the binder.

The binder is designed to include the function of the prelinker, the linkage editor, the
loader, and a number of APIs to manipulate the program object. Thus, the binder is
a superset of the linkage editor. Its functionality provides a high level of compatibility
with the prelinker and linkage editor, but provides additional functionality in some
areas. Generally, the terms binding and linking are interchangeable. For more
information on the compatibility between the binder, and the linker and prelinker,
see z/OS DFSMS Program Management.

Updates to the prelinking, linkage-editing, and loading functions that are performed
by the binder are delivered through the binder. If you use the prelinker shipped with
the z/OS C/C++ run-time library and the linkage editor (supplied through the binder)
you have to apply the latest maintenance for the run-time library as well as the
binder.

If you still need to use the prelinker and linkage editor, see z/OS C/C++ User’s
Guide.

File Format Considerations
You can use the binder in place of the prelinker and linkage editor but there are
exceptions, which are file format considerations. For further information, on when
you cannot use the binder, see the chapter about binding z/OS C/C++ programs in
the z/OS C/C++ User’s Guide.

22 z/OS V1R2.0 C/C++ Messages

The Program Management Binder
The binder provided with z/OS combines the object modules, load modules, and
program objects comprising an application. It produces a single z/OS output
program object or load module that you can load for execution. The binder supports
all C and C++ code, provided that you store the output program in a PDSE
(Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA compiler
options, you must use the prelinker. C and C++ code compiled with the GOFF or
XPLINK compiler options cannot be processed by the prelinker.

Using the binder without using the prelinker has the following advantages:

v Faster rebinds when recompiling and rebinding a few of your source files

v Rebinding at the single compile unit level of granularity (except when you use the
IPA compile-time option)

v Input of object modules, load modules, and program objects

v Improved long name support:
– Long names do not get converted into prelinker generated names
– Long names appear in the binder maps, enabling full cross-referencing
– Variables do not disappear after prelink
– Fewer steps in the process of producing your executable program

Using the binder without using the prelinker has the following disadvantage:

v Long name maximum symbol length:
– Long names currently processed by the binder are limited to 1024 characters.

The prelinker supports up to (32 K - 1) characters. IBM intends to bring the
binder limit in line with the prelinker in a future release.

The prelinker provided with z/OS Language Environment combines the object
modules comprising a z/OS C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in a
PDS), or bind it into a load module or a program object (which is stored in a PDS,
PDSE, or HFS file).

Note: For further information on the binder, refer to the DFSMS home page at
http://www.ibm.com/storage/software/sms/smshome.htm.

z/OS UNIX System Services (z/OS UNIX)
z/OS UNIX provides capabilities under z/OS to make it easier to implement or port
applications in an open, distributed environment. z/OS UNIX Services are available
to z/OS C/C++ application programs through the C/C++ language bindings available
with z/OS Language Environment.

Together, the z/OS UNIX System Services, z/OS Language Environment, and z/OS
C/C++ compilers provide an application programming interface that supports
industry standards.

z/OS UNIX provides support for both existing z/OS applications and new z/OS
UNIX applications through the following:

v C programming language support as defined by ISO C

v C++ programming language support as defined by ISO C++

Chapter 2. About IBM z/OS C/C++ 23

v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;
subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:
System Interfaces and Headers, Issue 4, Version 2, which provides standard
interfaces for better source code portability with other conforming systems; and
X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open
UNIX descriptions of sockets and X/Open Transport Interface (XTI)

v z/OS UNIX Extensions that provide z/OS-specific support beyond the defined
standards

v The z/OS UNIX Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– A shell, tcsh, based on the C shell, csh

– Tools and utilities that support the X/Open Single UNIX Specification, also
known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
z/OS support. The following is a partial list of utilities that are included:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or z/OS C/C++ executable files in HFS files from a
shell session

c89 Compiles, assembles, and binds z/OS UNIX C/C++ and
assembler applications

dbx Provides an environment to debug and run programs

gencat Merges the message text source files message file (usually
*.msg) into a formatted message catalog file (usually *.cat)

iconv Converts characters from one code set to another

lex Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

localedef Creates a compiled locale object

make Helps you manage projects containing a set of interdependent
files, such as a program with many z/OS source and object
files, keeping all such files up to date with one another

yacc Allows you to write compilers and other programs that parse
input according to strict grammar rules

– Support for other utilities such as:

c++ Compiles, assembles, and binds z/OS UNIX C++ applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source
data (the output from mkcatdefs) to gencat

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

v The z/OS UNIX Debugger feature, which provides the dbx interactive symbolic
debugger for z/OS UNIX applications

v Access to a hierarchical file system (HFS), with support for the POSIX.1 and
XPG4 standards

v z/OS C/C++ I/O routines, which support using HFS files, standard z/OS data
sets, or a mixture of both

24 z/OS V1R2.0 C/C++ Messages

v Application threads (with support for a subset of POSIX.4a)

v Support for z/OS C/C++ DLLs

z/OS UNIX offers program portability across multivendor operating systems, with
support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

For application developers who have worked with other UNIX environments, the
z/OS UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments, you
may find that the z/OS UNIX environment can enhance your productivity. Refer to
z/OS UNIX System Services User’s Guide for more information on the Shell and
Utilities.

z/OS C/C++ Applications with z/OS UNIX C/C++ Functions
All z/OS UNIX C functions are available at all times. In some situations, you must
specify the POSIX(ON) run-time option. This is required for the POSIX.4a threading
functions, and the system() and signal handling functions where the behavior is
different between POSIX/XPG4 and ISO. Refer to z/OS C/C++ Run-Time Library
Reference for more information about requirements for each function.

You can invoke a z/OS C/C++ program that uses z/OS UNIX C functions using the
following methods:

v Directly from a shell.

v From another program, or from a shell, using one of the exec family of functions,
or the BPXBATCH utility from TSO or MVS batch.

v Using the POSIX system() call.

v Directly through TSO or MVS batch without the use of the intermediate
BPXBATCH utility. In some cases, you may require the POSIX(ON) run-time
option.

Input and Output
The C/C++ run-time library that supports the z/OS C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The C++
I/O Stream Class Library provides additional support.

I/O Interfaces
The C/C++ run-time library supports the following I/O interfaces:

C Stream I/O
This is the default and the ISO-defined I/O method. This method processes
all input and output on a per-character basis.

Record I/O
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/O is a z/OS C/C++ extension to the ISO standard.

TCP/IP Sockets I/O
z/OS UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known as
sockets. A set of C language functions provides support for z/OS UNIX
sockets. z/OS UNIX sockets correspond closely to the sockets used by
UNIX applications that use the Berkeley Software Distribution (BSD) 4.3

Chapter 2. About IBM z/OS C/C++ 25

standard (also known as OE sockets). The slightly different interface of the
X/Open CAE Specification, Networking Services, Issue 4, is supplied as an
additional choice. This interface is known as X/Open Sockets.

The z/OS UNIX socket application program interface (API) provides support
for both UNIX domain sockets and Internet domain sockets. UNIX domain
sockets, or local sockets, allow interprocess communication within z/OS,
independent of TCP/IP. Local sockets behave like traditional UNIX sockets
and allow processes to communicate with one another on a single system.
With Internet sockets, application programs can communicate with each
other in the network using TCP/IP.

In addition, the C++ I/O Stream libraries support formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output for
your own data types. This helps improve the maintainability of programs that use
input and output.

File Types
In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ run-time library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
z/OS C/C++ has native support for three types of VSAM data organization:

v Key-sequenced data sets (KSDS). Use KSDS to access a record through
a key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

v Entry-sequenced data sets (ESDS). Use ESDS to access data in the
order it was created (or in reverse order).

v Relative-record data sets (RRDS). Use RRDS for data in which each
item has a particular number (for example, a telephone system where a
record is associated with each telephone number).

For more information on how to perform I/O operations on these VSAM file
types, see z/OS C/C++ Programming Guide.

Hierarchical File System Files
z/OS C/C++ recognizes Hierarchical File System (HFS) file names. The
name specified on the fopen() or freopen() call has to conform to certain
rules (described in z/OS C/C++ Programming Guide). You can create
regular HFS files, special character HFS files, or FIFO HFS files. You can
also create links or directories.

Memory Files
Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than to
devices. Since memory files reside in main storage and only exist while the
program is executing, you primarily use them as work files. You can access
memory files across load modules through calls to non-POSIX system()
and C fetch(); they exist for the life of the root program. Standard streams
can be redirected to memory files on a non-POSIX system() call using
command line redirection.

Hiperspace™ Expanded Storage
Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to 2 GB of contiguous
virtual storage space. A program can use this storage as a buffer
(1 gigabyte(GB) = 230 bytes).

26 z/OS V1R2.0 C/C++ Messages

Additional I/O Features
z/OS C/C++ provides additional I/O support through the following features:

v Large file support, which enables I/O to and from hierarchical file system (HFS)
files that are larger than 2 GB

v User error handling for serious I/O failures (SIGIOERR)

v Improved sequential data access performance through enablement of the
DFSMS/MVS® support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

v Full support of PDSEs on z/OS (including support for multiple members opened
for write)

v Overlapped I/O support under z/OS (NCP, BUFNO)

v Multibyte character I/O functions

v Fixed-point (packed) decimal data type support in formatted I/O functions

v Support for multiple volume data sets that span more than one volume of DASD
or tape

v Support for Generation Data Group I/O

The System Programming C Facility
The System Programming C (SPC) facility allows you to build applications that
require no dynamic loading of z/OS Language Environment libraries. It also allows
you to tailor your application for better utilization of the the low-level services
available on your operating system. SPC offers a number of advantages:

v You can develop applications that can be executed in a customized environment
rather than with z/OS Language Environment services. Note that if you do not
use z/OS Language Environment services, only some built-in functions and a
limited set of C/C++ run-time library functions are available to you.

v You can substitute the z/OS C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SPC.

v SPC lets you develop applications featuring a user-controlled environment, in
which a z/OS C environment is created once and used repeatedly for C function
execution from other languages.

v You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independent of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products
When you use z/OS C/C++, you can write programs that utilize the power of other
IBM products and subsystems:

v Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the z/OS C++ compiler.
However, your z/OS C++ program can use interlanguage calls (ILC) to call
z/OS C programs that access CSP.

Chapter 2. About IBM z/OS C/C++ 27

v Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++ application
programs. The CICS® Command-Level Interface provides data, job, and task
management facilities that are normally provided by the operating system.

Note: Code preprocessed with CICS/ESA versions prior to V4R1 is not
supported for z/OS C++ applications. z/OS C++ code preprocessed on
CICS/ESA V4R1 cannot run under CICS/ESA V3R3.

v DB2 Universal Database™ (UDB) for z/OS

DB2 programs manage data that is stored in relational databases. You can
access the data by using a structured set of queries that are written in Structured
Query Language (SQL).

A DB2 program uses SQL statements that are embedded in the application
program. The SQL translator (DB2 preprocessor) translates the embedded SQL
into host language statements, which are then compiled by the z/OS C/C++
compilers. The DB2 program processes requests, then returns control to the
application program.

v Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your C or C++ program to manipulate temporary data objects that are known as
TEMPSPACE and VSAM linear data sets.

v Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture (IMS/ESA)
product provides support for hierarchical databases.

v Interactive System Productivity Facility (ISPF)

z/OS C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a user
and a computer. The dialog interface contains display, variable, message, and
dialog services as well as other facilities that are used to write interactive
applications.

v Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts (including support for the double-byte character set)

– Business image support

– Saving and restoring graphic pictures

– Support for many types of display terminals, printers, and plotters

v Query Management Facility (QMF)

z/OS C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable interface.
You can create applications to perform a variety of tasks, such as data entry,
query building, administration aids, and report analysis.

v z/OS Java Support

The Java language supports the Java Native Interface (JNI) for making calls to
and from C/C++. These calls do not use ILC support but rather the Java defined
interface JNI. Java code, which has been compiled using the High Performance

28 z/OS V1R2.0 C/C++ Messages

Compiler for Java (HPCJ), will support the JNI interface. Calls to C or C++ do not
distinguish between compiled Java and interpreted Java.

Additional Features of z/OS C/C++

Feature Description

long long Data Type The z/OS C/C++ compiler supports long long as a native data type when the compiler
option LANGLVL(LONGLONG) is turned on. This option is turned on by default by the
compiler option LANGLVL(EXTENDED).

Multibyte Character Support z/OS C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by z/OS C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

z/OS C/C++ provides three S/390 floating-point number data types: single precision (32
bits), declared as float; double precision (64 bits), declared as double; and extended
precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, z/OS C/C++ also supports IEEE 754 floating-point representation. By
default, float, double, and long double values are represented in IBM S/390 floating
point format. However, the IEEE 754 floating-point representation is used if you specify
the FLOAT(IEEE754) compile option. For details on this support, see the description of
the FLOAT option in z/OS C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support z/OS C/C++ provides message text in either American English or Japanese. You can
dynamically switch between these two languages.

Locale Definition Support z/OS C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
Page) Support

The z/OS C/C++ compiler can compile C/C++ source written in different EBCDIC code
pages. In addition, the iconv utility converts data or source from one code page to
another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multi-threading Threads are efficient in applications that allow them to take advantage of any
underlying parallelism available in the host environment. This underlying parallelism in
the host can be exploited either by forking a process and creating a new address
space, or by using multiple threads within a single process. For more information, refer
to the z/OS C/C++ Programming Guide

Chapter 2. About IBM z/OS C/C++ 29

Feature Description

Multitasking Facility (MTF) Multitasking is a mode of operation where your program performs two or more tasks at
the same time. z/OS C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of z/OS to allow a single z/OS C application program to use
more than one processor of a multiprocessing system simultaneously.
Note: XPLINK is not supported in an MTF environment. You can also use threads to
perform multitasking with or without XPLINK, as described in the z/OS C/C++
Programming Guide.

Packed Structures and
Unions

z/OS C provides support for packed structures and unions. Structures and unions may
be packed to reduce the storage requirements of an z/OS C program or to define
structures that are laid out according to COBOL or PL/I structure layout rules.

Fixed-point (Packed)
Decimal Data

z/OS C supports fixed-point (packed) decimal as a native data type for use in business
applications. The packed data type is similar to the COBOL data type COMP-3 or the PL/I
data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under
z/OS, z/OS UNIX, and TSO. You can also use the system() function to call EXECs on
z/OS and TSO, or Shell scripts using z/OS UNIX.

Exploitation of ESA Support for z/OS, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows you
to exploit the features of the ESA.

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(2) instructs the compiler to generate
faster instruction sequences that are available only on newer machines. ARCH(3) also
generates these faster instruction sequences and enables support for IEEE 754 Binary
Floating-Point instructions. Code compiled with ARCH(2) runs on G2, G3, G4, and 2003
processors and code compiled with ARCH(3) runs on a G5 or G6 processor, and
follow-on models.

Use the TUNE compiler option to optimize your application for a specific machine
architecture. TUNE impacts performance only; it does not impact the processor model on
which you will be able to run your application. TUNE(3) optimizes your application for the
newer G4, G5, and G6 processors. TUNE(2) optimizes your application for other
architectures. For more information, refer to the ARCHITECTURE and TUNE compiler
information in z/OS C/C++ User’s Guide.

Built-in Functions for
Floating-Point and Other
Hardware Instructions

Use built-in functions for floating-point and other hardware instructions that are
otherwise inaccessible to C/C++ programs. See the appendix on built-in functions in
z/OS C/C++ Programming Guide.

30 z/OS V1R2.0 C/C++ Messages

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages

This chapter contains information about the compiler messages and should not be
used as programming interface information.

Return Codes
For every compilation job or job step, the compiler generates a return code that
indicates to the operating system the degree of success or failure it achieved:

Table 3. Return Codes from Compilation of a z/OS C/C++ Program

Return Code Type of Error Detected Compilation Result

0 No error detected; informational
messages may have been
issued.

Compilation completed.
Successful execution
anticipated.

4 Warning error detected. Compilation completed.
Execution may not be
successful.

8 Error detected. Compilation may have been
completed. Successful
execution not possible.

12 Severe error detected. Compilation may have been
completed. Successful
execution not possible.

16 Terminating error detected. Compilation terminated
abnormally. Successful
execution not possible.

33 A library level prior to z/OS
Language Environment V1R2
was used.

Compilation terminated
abnormally. Successful
execution not possible.

The return code indicates the highest possible error severity that the compiler
detected. Therefore, a particular entry under the Types of Error column includes all
error types above it. For example, return code 12 indicates that the compiler has
issued a Severe Error and may have also issued any combination of Error,
Warning, and Informational messages. But it does not necessarily mean that all
these error types are present in that particular compile.

Compiler Messages
Message Format: CCNnnnn text <&n> where:

nnnn error message number

text message which appears on the screen

&n compiler substitution variable

CCN0008 Source file &1 cannot be opened.

Where: &1 is a file name, enclosed in quotes or angle
brackets as specified in the corresponding ″include″
directive.

Explanation: The compiler could not open the
specified source file.

User Response: Ensure the source file name is
correct. Ensure that the correct file is being read and
has not been corrupted. If the file is located on a LAN
drive, ensure the LAN is working properly. Also, the file

© Copyright IBM Corp. 1996, 2001 31

may be locked by another process or access may be
denied because of insufficient permission.

CCN0015 The compiler could not open the
output file ″&1″.

Where: &1 is a file name.

User Response: Ensure the output file name is
correct. Also, ensure that the location of the output file
has sufficient storage available. If using a LAN drive,
ensure that the LAN is working properly and you have
permission to write to the disk.

CCN0049 The option ″&1″ is not supported.

Where: &1 is an option

Explanation: The command line contained an option
that is not supported. Note that some option parameters
must not have spaces between the option and the
parameter.

User Response: Remove the option. Check the
syntax of the options.

CCN0358 The ″&1″ option is not allowed with the
″&2″ option.

Where: &1 and &2 are both option names.

Explanation: The specified options cannot be used
together. The first option specified in the message is
ignored.

User Response: Remove one of the options.

CCN0459 An incomplete compile option for ″&1″
has been specified. ″&2″ was expected.

Where: &1 is the option name. &2 is the token that
was missing

Explanation: The command line contained an
incomplete option. The message identifies what the
compiler expected and what it actually found.

User Response: Complete the compile option.

CCN0460 Negative form of option ″&1″ is not
allowed.

Where: &1 is the option name.

User Response: Remove the option or change it to
the positive form

CCN0461 ″&1″ is not a valid sub-option for ″&2″.
Option is ignored.

Where: &1 is the option name.

Explanation: The command line contained an option
with an invalid sub-option.

User Response: Remove the sub-option.

CCN0462 ″&1″ must have a sub-option specified.

Where: &1 is the option name.

Explanation: The command line contained an option
that was missing a suboption.

User Response: Specify a sub-option.

CCN0463 Sub-option is not allowed in ″&1″
option.

Where: &1 is the option name.

User Response: Remove the sub-option.

CCN0464 ″&1″ requires exactly ″&2″
sub-option(s) to be specified. ″&3″
were given.

Where: &1 is the option name. &2 is the number of
options expected.

Explanation: The command line contained an option
that had an incorrect number of sub-options specified.
The message identifies the number of sub-options the
compiler expected and the number it actually found.

User Response: Ensure the correct number of
sub-option(s) are given.

CCN0465 ″&1″ requires at most ″&2″
sub-option(s) to be specified. ″&3″
were given.

Where: &1 is the option name. &2 is the number of
options expected.

Explanation: The command line contained an option
that more sub-options than is allowed for this options.
The message identifies the most number of sub-options
the compiler expected and the number it actually found.

User Response: Ensure the maximum number of
sub-options is not exceeded.

CCN0466 ″&1″ requires at least ″&2″
sub-option(s) to be specified. ″&3″
were given.

Where: &1 is the option name. &2 is the number of
options expected.

Explanation: The command line contained an option
that fewer sub-options than is allowed for this options.
The message identifies the least number of sub-options
the compiler expected and the number it actually found.

User Response: Ensure the minimum number of
sub-options are specified.

32 z/OS V1R2.0 C/C++ Messages

CCN0569 Option ″&1″ is not supported for &2.

Explanation: The option is not supported by this
compiler.

User Response: Remove the option.

CCN0611 Unable to access options file &1.

Where: &1 is the options file name specified on
OPTFILE option.

Explanation: The compiler could not access the
specified options file. It was either unable to open it or
unable to read it.

User Response: Ensure the options file name and
other specifications are correct. Ensure that the access
authority is sufficient. Ensure that the file being
accessed has not been corrupted.

CCN0612 Option &1 specified in an options file
is ignored.

Where: &1 is an option name specified in the options
file.

Explanation: Option &1 is not allowed in an options
file.

User Response: Remove the &1 option from the
options file. Option OPTFILE can not be nested.

CCN0613 The continuation character on the last
line of the options file &1 is ignored.

Explanation: The continuation character on the last
line of a file is useless.

User Response: Remove the continuation character
on the last line of the options file. Make sure that it is
not a typo for something else.

CCN0614 Macro name ″&1″ contains characters
not valid on the ″&2″ option.

Explanation: Macro names can contain only
alphanumeric characters and the underscore character
and must not begin with a numeric character.

User Response: Change the macro name.

CCN0615 Semantic function for processing ″&1″
option is missing.

Explanation: Option &1 cannot be processed because
its semantic function is missing.

User Response: Provide the option semantic function.

CCN0623 Option ″&1″ ignored because option
″&2″ specified.

Explanation: Specifying the second option indicated
means the first has no effect.

User Response: Remove one of the options.

CCN0624 &1 is not a valid dataset name.

Explanation: The dataset name is not valid because it
is too long.

User Response: Use a shorter dataset name.

CCN0625 &1 does not exist.

Explanation: The dataset does not exist.

User Response: Supply an existing dataset.

CCN0626 There are no members in &1 to
compile.

Explanation: There are no members in the partitioned
dataset to compile.

User Response: Supply a partitioned dataset that
contains members.

CCN0627 &1 should be a partitioned dataset.

Explanation: A partitioned dataset is expected.

User Response: Supply a partitioned dataset.

CCN0628 &1 should not be a partitioned dataset.

Explanation: A non-partitioned dataset is expected.

User Response: Supply a non-partitioned dataset.

CCN0629 &1 has invalid attributes.

Explanation: The attributes of the dataset do not
match the attributes expected by the compiler.

User Response: Check the informational messages
issued with this message and change the dataset
attributes accordingly.

CCN0630 &1 has attributes &2.

Explanation: The dataset has the attributes indicated.

User Response: None.

CCN0631 The attributes should be &1.

Explanation: The dataset should have the attributes
indicated.

User Response: None.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 33

CCN0632 The attributes should be one of the
following:

Explanation: The dataset should have one of the sets
of attributes indicated.

User Response: None.

CCN0633 Unable to allocate &1.

Explanation: Unable to allocate the dataset.

User Response: Check that the dataset has a valid
name and can be accessed.

CCN0634 Unable to load &1. Compilation
terminated.

Explanation: Unable to fetch one of the compiler
phases.

User Response: Check that the compiler is installed
correctly. Make sure there is enough memory in the
region to fetch the module. You may need to specify the
runtime option HEAP(,,,FREE,,) to prevent the compiler
from running out of memory.

CCN0635 Timestamp error on &1.

Explanation: Timestamp error while compiling a
partitioned dataset.

User Response: Check to see if the dataset is
corrupted.

CCN0702 An error was encountered in accessing
the alternate ddname table. The default
ddnames will be used.

Explanation: The compiler could not access the
alternate ddname table. Compilation will continue, using
the default ddname table.

User Response: Check that the alternate ddname
table was coded correctly.

CCN0703 An error was encountered in a call to
&1 while processing &2.

Where: &1 is the name of the library function. &2 is
the name of the file or path.

Explanation: A library function called by the compiler
encountered an error. The compiler will issue a perror()
message with more specific information on the failure.

User Response: If the file was created by the user,
verify that it was created correctly; See the programmer
response for the accompanying perror() message for
additional information.

CCN0704 There are no files with the default
extension in &1.

Where: &1 is a directory name.

Explanation: There are no files in the given directory
which match the default extension. The compiler
returned without compiling any files.

User Response: Supply a directory which contains
files with the appropriate extension. The default
extension for C is ″.c″ and the default extension for C++
is ″.C″.

CCN0705 The output file &1 is not supported in
combination with source file &2.

Where: &1 is an output file specified in a compiler
option, and &2 is the source file to be compiled.

Explanation: The output file specified in a compiler
option is of a type which is not supported in combination
with the type of the source file. An informational
message describing supported output file types for the
given source file type follows.

User Response: Supply an output file of one of the
supported types in the compiler sub-option, or let the
compiler generate a default output file name.

CCN0706 The source file is a CMS file. The
suboption should specify a CMS file or
a BFS file in an existing directory.

CCN0707 The source file is a BFS file. The
suboption should specify a CMS file, a
BFS file in an existing directory, or an
existing BFS directory.

CCN0708 The source file is a BFS directory. The
suboption should specify an existing
BFS directory.

CCN0709 The source file is a Sequential data set.
The suboption should specify a
sequential data set, a PDS member, or
an HFS file in an existing directory.

CCN0710 The source file is a PDS member. The
suboption should specify a sequential
data set, a PDS member, a PDS, an
HFS file in an existing directory, or an
existing HFS directory.

CCN0711 The source file is a PDS. The suboption
should specify a PDS or an existing
HFS directory.

34 z/OS V1R2.0 C/C++ Messages

CCN0712 The source file is a HFS file. The
suboption should specify a sequential
data set, a PDS member, an HFS file in
an existing directory, or an existing
HFS directory.

CCN0713 The source file is a HFS directory. The
suboption should specify an existing
HFS directory.

CCN0721 Option ″&1″ cannot be specified with
option ″&2″. Option ″&3″ is ignored.

Where: &1 option name, &2 option name, &3 option
name.

Explanation: A SEARCH or LSEARCH option cannot
be specified on the same compiler invocation with a
SYSPATH or USERPATH option. All previous
specifications of the conflicting options are ignored.

User Response: Use the correct syntax for specifying
the option

CCN0745 &1 should be a partitioned dataset or
HFS directory.

Explanation: A partitioned dataset or HFS directory is
expected.

User Response: Supply a partitioned dataset or HFS
directory.

CCN0750 Suboptions ″&1″ and ″&2″ of option
″&3″ conflict.

Where: &3 is the option name. &1 and &2 are the
sub-option names.

User Response: Change the sub-option.

CCN0764 Compiler cannot create temporary
files.

Explanation: The intermediate code files could not be
created. Please verify that the target file system exists,
is writable and is not full.

User Response: Ensure that the designated location
for temporary objects exists, is writable and is not full.

CCN0767 The ″&1″ feature of z/OS is not
enabled. Contact your system
programmer.

Explanation: This feature of z/OS is not enabled at
your installation. Your system programmer can contact
IBM z/OS service to have this element enabled.

CCN0768 Compiling ″&1″.

Explanation: Informational message issued during
PDS or HFS directory compiles to indicate when the
compiler has started compiling the next member.

CCN0770 The name &1 is invalid. Please correct
and recompile.

Explanation: The name shown is invalid. Please
correct the name and retry.

CCN0791 Options ″&1″ and ″&2″ are not
compatible.

Where: &1 and &2 are both option names.

Explanation: The specified options cannot be used
together.

User Response: Change option values.

CCN0793 Compilation failed for file &1. Object
file not created.

Where: &1 is a file name

Explanation: The compiler detected an error and
terminated the compilation. Object file was not created.

User Response: Correct the reported errors and
recompile.

CCN0795 Unable to open existing dataset &1.

Where: &1 is a dataset name.

Explanation: Although the dataset exists, the compiler
was unable to open and/or obtain file information about
it.

User Response: Check the informational messages
issued with this message and correct the corresponding
problems associated with the dataset.

CCN0796 This compiler requires a runtime
environment __librel() value of &1.

Where: &1 is the required runtime level in the
__librel() format.

Explanation: The compiler cannot run with the current
runtime environment because it needs the runtime
release indicated.

User Response: Check the informational message
issued with this message to determine your current
runtime release. Make sure you are running with the
runtime environment required.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 35

CCN0797 You are currently running with the
runtime environment &1.

Where: &1 is the current runtime level in the __librel()
format.

Explanation: The message displays the current
runtime level installed on your system.

User Response: None.

CCN0822 Option &1 is locked and cannot be
changed.

Explanation: The option has been locked during
system installation. The option settings cannot be
changed.

User Response: Remove the option from the
command line, or ask the system programmer to unlock
the option.

CCN0823 Lock suboption &1 is not supported.

Explanation: The lock suboption specified is not
supported and is ignored.

User Response: The suboption to the lock option
must itself be a valid option. The lock option is set
during compiler installation. Check with the system
programmer.

CCN1001 INTERNAL COMPILER ERROR: &1.

Explanation: An internal compiler error occurred
during compilation.

User Response: Contact your Service Representative.

CCN1002 Virtual storage exceeded.

Explanation: The compiler ran out of memory trying to
compile the file. This sometimes happens with large
files or programs with large functions. Note that very
large programs limit the amount of optimization that can
be done.

User Response: Shut down any large processes that
are running, ensure your swap path is large enough,
turn off optimization, and redefine your virtual storage to
a larger size. You can also divide the file into several
small sections or shorten the function.

CCN1003 &1.

Where: &1 is the detailed message text.

Explanation: General error message.

CCN1031 Unable to open file ″&1″.

Where: &1 is a file name.

Explanation: The compiler could not open the
specified file.

User Response: Ensure the file name is correct.
Ensure that the correct file is specified. If the file is
located on a LAN drive, ensure the LAN is working
properly. Also, the file may be locked by another
process or access may be denied because of
insufficient permission.

CCN1032 An error occurred while reading file
″&1″.

Where: &1 is a file name.

Explanation: The compiler detected an error while
reading from the specified file.

User Response: Ensure that the correct file is being
read and has not been damaged. If the file is located on
a LAN drive, ensure the LAN is working properly.

CCN1033 An error occurred while writing to file
″&1″.

Where: &1 is a file name.

Explanation: The compiler detected an error while
writing to the specified file.

User Response: Ensure that the correct file is
specified. If the file is located on a LAN drive, ensure
the LAN is working properly.

CCN1034 Read-only pointer initialization of
dynamically allocated object &1 is not
valid.

Explanation: The value of a read-only pointer must be
known at compile time; a pointer cannot be read-only
and point to a dynamically allocated object at the same
time because the address of the pointee is known at run
time only.

User Response: Modify the code so that the pointer is
initialized with a read-only value or make the pointer
read-write.

CCN1051 Function &1 exceeds size limit.

Explanation: The ACU for the function exceeds the
LIMIT specified in the INLINE suboption.

User Response: Increase LIMIT if feasible to do so.

36 z/OS V1R2.0 C/C++ Messages

CCN1052 Function &1 is (or grows) too large to
be inlined.

Explanation: A function is too large to be inlined into
another function.

User Response: Use #pragma inline if feasible to do
so.

CCN1053 Some calls to function &1 cannot be
inlined.

Explanation: At least one call is either directly
recursive, or the wrong number of parameters were
specified.

User Response: Check all calls to the function
specified and make that number of parameters match
the function definition.

CCN1054 Automatic storage for function &1
increased to over &2.

Explanation: The size of automatic storage for
function increased by at least 4 KB due to inlining.

User Response: Avoid inlining of functions which
have large automatic storage.

CCN1055 Parameter area overflow while
compiling &1. Parameter area size
exceeds the allowable limit of &2.

Explanation: The parameter area for a function
resides in the first 4K of automatic storage for that
function. This message indicates that the parameter
area cannot fit into 4K.

User Response: Reduce the size of the parameter
area by passing fewer parameters or by passing the
address of a large structure rather than the structure
itself.

CCN1057 &1 section size cannot exceed
16777215 bytes. Total section size is
&2 bytes.

Explanation: A Data or Code section cannot exceed
16M in size.

User Response: Partition input source files into
multiple source files which can be compiled separately.

CCN1101 Maximum spill size of &2 is exceeded
in function &1.

Explanation: Spill size is the size of the spill area.
Spill area is the storage allocated if the number of
machine registers is not sufficient for program
translation.

User Response: Reduce the complexity of the
program and recompile.

CCN1102 Spill size for function &1 is not
sufficient. Recompile specifying option
SPILL(n) where &2 < n <= &3.

Explanation: Spill size is the size of the spill area.
Spill area is the storage allocated if the number of
machine registers is not sufficient for program
translation.

User Response: Recompile using the SPILL(n) option
&2 < n <= &3 or with a different OPT level.

CCN1103 Internal error while compiling function
&1. &2.

Explanation: An internal compiler error occurred
during compilation.

User Response: Contact your Service Representative
or compile with a different OPT level.

CCN1104 Internal error while compiling function
&1. &2. Compilation terminated.

Explanation: An internal compiler error of high
severity has occurred.

User Response: Contact your Service Representative.
Be prepared to quote the text of this message.

CCN1105 Constant table overflow compiling
function &1. Compilation terminated.

Explanation: The constant table is the table that
stores all the integer and floating point constants.

User Response: Reduce the number of constants in
the program and recompile.

CCN1106 Instruction in function &1 on line &2 is
too complex. Compilation terminated.

Explanation: The specified instruction is too complex
to be optimized.

User Response: Reduce the complexity of the
instruction and recompile, or recompile with a different
OPT level.

CCN1107 Program too complex in function &1.

Explanation: The specified function is too complex to
be optimized.

User Response: Reduce the complexity of the
program and recompile, or recompile with a different
OPT level.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 37

CCN1108 Expression too complex in function
&1. Some optimizations not performed.

Explanation: The specified expression is too complex
to be optimized.

User Response: Reduce the complexity of the
expression or compile with a different OPT level.

CCN1109 Infinite loop detected in function &1.
Program may not stop.

Explanation: An infinite loop has been detected in the
given function.

User Response: Recode the loop so that it will end.

CCN1110 Loop too complex in function &1.
Some optimizations not performed.

Explanation: The specified loop is too complex to be
optimized.

User Response: No action is required.

CCN1111 Division by zero detected in function
&1. Runtime exception may occur.

Explanation: A division by zero has been detected in
the given function.

User Response: Recode the expression to eliminate
the divide by zero.

CCN1112 Exponent is non-positive with zero as
base in function &1. Runtime exception
may occur.

Explanation: This is a possible floating-point divide by
zero.

User Response: Recode the expression to eliminate
the divide by zero.

CCN1113 Unsigned division by zero detected in
function &1. Runtime exception may
occur.

Explanation: A division by zero has been detected in
the given function.

User Response: Recode the expression to eliminate
the divide by zero.

CCN1114 Internal error while compiling function
&1. &2.

Explanation: An internal compiler error of low severity
has occurred.

User Response: Contact your Service Representative
or compile with a different OPT level.

CCN1115 Control flow too complex in function
&1; number of basic blocks or edges
exceeds &2.

Explanation: Basic blocks are segments of executable
code without control flow. Edges are the possible paths
of control flow between basic blocks.

User Response: Reduce the complexity of the
program and recompile.

CCN1116 Too many expressions in function &1;
number of symbolic registers exceeds
&2.

Explanation: Symbolic registers are the internal
representation of the results of computations.

User Response: Reduce the complexity of the
program and recompile.

CCN1117 Too many expressions in function &1;
number of computation table entries
exceeds &2.

Explanation: The computation table contains all
instructions generated in the translation of a program.

User Response: Reduce the complexity of the
program and recompile.

CCN1118 Too many instructions in function &1;
number of procedure list entries
exceeds &2.

Explanation: The procedure list is the list of all
instructions generated by the translation of each
subprogram.

User Response: Reduce the complexity of the
program and recompile.

CCN1119 Number of labels in function &1
exceeds &2.

Explanation: Labels are used whenever the execution
path of the program could change; for example: if
statements, switch statements, loops or conditional
expressions.

User Response: Reduce the complexity of the
program and recompile.

CCN1120 Too many symbols in function &1;
number of dictionary entries exceeds
&2.

Explanation: Dictionary entries are used for variables,
aggregate members, string literals, pointer
dereferences, function names and internal compiler
symbols.

User Response: Compile the program at a lower level

38 z/OS V1R2.0 C/C++ Messages

of optimization or simplify the program by reducing the
number of variables or expressions.

CCN1121 Program is too complex in function &1.
Specify MAXMEM option value greater
than &2.

Explanation: Some optimizations not performed.

User Response: Recompile specifying option
MAXMEM with the suggested value for additional
optimization.

CCN1122 Parameter area overflow while
compiling &1. Parameter area size
exceeds &2.

Explanation: The parameter area is used to pass
parameters when calling functions. Its size depends on
the number of reference parameters, the number and
size of value parameters, and on the linkage used.

User Response: Reduce the size of the parameter
area by passing fewer parameters or by passing the
address of a large structure rather than the structure
itself.

CCN1123 Spill size for function &1 is exceeded.
Recompile specifying option SPILL(n)
where &2 < n <= &3 for faster spill
code.

Explanation: Spill size is the reserved size of the
primary spill area. Spill area is the storage allocated if
the number of machine registers is not sufficient for
program translation.

User Response: Recompile using the SPILL(n) option
&2 < n <= &3 for improved spill code generation.

CCN1130 An error occured while opening file
″&1″.

Where: &1 is a file name

Explanation: The compiler could not open the
specified file.

User Response: Ensure the file name is correct.
Ensure that the correct file is being opened and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

CCN1131 An error occured while writing file
″&1″.

Where: &1 is a file name

Explanation: The compiler could not read from the
specified file.

User Response: Ensure the file name is correct.

Ensure that the correct file is being written to and has
not been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

CCN1132 An error occured while closing file
″&1″.

Where: &1 is a file name

Explanation: The compiler could not write to the
specified file.

User Response: Ensure the file name is correct.
Ensure that the correct file is being closed and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

CCN1141 Automatic area for &1 is too large

Explanation: Automatic data resides in the stack; the
stack size is limited by the target machine addressabilty.

User Response: Avoid large structures and / or arrays
as local variables; try using dynamically allocated data.
Alternatively, try to break down the procedure into
several smaller procedures.

CCN2000 Option ″&1″ is not recognized.

Where: &1 is the option name

Explanation: An invalid option was specified.

User Response: Correct the spelling of the option.

CCN2001 Suboption ″&1″ of option ″&2″ is not
supported.

Where: &2 is the option name. &1 is the suboption
name.

Explanation: The invocation option contained an
unsupported suboption.

User Response: Change the suboption. Check the
syntax of the suboption.

CCN2002 Required parameters for option ″&1″
are not specified.

Where: &1 is the option name

Explanation: This option requires that one or more
parameters be specified.

User Response: Specify appropriate parameters for
the option. Check the option syntax for details.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 39

CCN2003 Parameter ″&1″ of option ″&2″ is not
supported.

Where: &2 is the option name. &1 is the option
parameter.

Explanation: The parameter for the specified option
has invalid syntax.

User Response: Change the option parameter. Check
the syntax of the option parameter.

CCN2004 Option ″&1″ parameter error; ″&2″ is
not a digit.

Where: &1 is the option name. &2 is invalid character.

Explanation: A non-numeric character was found in
the option parameter.

User Response: Change the option parameter. Check
the syntax of the option.

CCN2005 ″&1″ is not a decimal number.

Where: &1 is the invalid character.

Explanation: A non-numeric character was found in
the option parameter.

User Response: Change the option parameter. Check
the syntax of the option.

CCN2010 ″&1″ requires ″&2″ suboptions to be
specified. ″&3″ are specified.

Where: &1 is the option name. &2 is the number of
options expected. &3 is the number of options specified.

Explanation: An incorrect number of suboptions was
specified for this option. The message identifies the
number of suboptions the compiler expected and the
number it actually found.

User Response: Ensure the correct number of
suboptions are specified.

CCN2011 At most ″&2″ suboptions must be
specified for &1. ″&3″ are specified.

Where: &1 is the option name. &2 is the number of
options expected. &3 is the number of options specified.

Explanation: Too many suboptions were specified for
this option.

User Response: Ensure that the maximum number of
suboptions is not exceeded.

CCN2012 ″&1″ requires at least ″&2″ suboptions
to be specified. ″&3″ are specified.

Where: &1 is the option name. &2 is the number of
options expected. &3 is the number of options specified.

Explanation: Not enough suboptions were specified
for this option.

User Response: Ensure that the minimum number of
suboptions are specified.

CCN2013 Suboptions ″&1″ and ″&2″ of option
″&3″ conflict.

Where: &3 is the option name. &1 and &2 are the
suboption names.

User Response: Determine which suboption is
required. Remove the other suboption to eliminate the
conflict.

CCN2015 Incompatible specifications for options
ARCH and TUNE.

User Response: Determine what target
machine/architecture family is desired and select a
compatible target machine for tuning.

CCN2020 Option ″&1″ is turned on because
option ″&2″ is specified.

Where: &1 and &2 are both option names.

Explanation: If you specify option &2, the compiler
turns on option &1 to achieve a better options
combination.

User Response: Specify option &1 to eliminate this
message.

CCN2021 Option ″&1″ is ignored because option
″&2″ was specified.

Where: &1 and &2 are both option names.

Explanation: Specifying the second option indicated
means the first has no effect.

User Response: Remove one of the options.

CCN2022 Option ″&1″ is not supported for IPA
processing.

Where: &1 is an option name.

Explanation: The specified option (or corresponding
#pragma) is not supported for an IPA compilation.
Processing is terminated.

User Response: Correct the option or #pragma
specification, as appropriate.

CCN2023 Option ″&1″ has been promoted to
″&2″ because option ″&3″ was
specified.

Where: &1, &2 and &3 are all option names.

Explanation: Specifying the &3 option caused
sufficient information to be available to support the &2

40 z/OS V1R2.0 C/C++ Messages

option instead of the &1 option.

User Response: None

CCN2030 &1

Where: &1 is the detailed message text.

Explanation: General informational message.

CCN2031 &1

Where: &1 is the detailed message text.

Explanation: General warning message.

CCN2032 &1

Where: &1 is the detailed message text.

Explanation: General error message.

CCN2033 &1

Where: &1 is the detailed message text.

Explanation: General severe error message.

CCN2050 IPA Link control file: Syntax error.

Explanation: A syntax error was detected in the IPA
Link control file. Processing is terminated.

User Response: Correct the IPA Link control file
syntax.

CCN2051 IPA Link control file: Unmatched quote.

Explanation: A quoted string representing a directive
operand was detected in the IPA Link control file, but
this string was not terminated by a matching quote
before the end of file. Processing is terminated.

User Response: Correct the IPA Link control file
operand syntax.

CCN2052 IPA Link control file: Directive ″&1″ is
incorrect.

Where: &1 is the directive in error.

Explanation: An incorrectly specified directive was
detected in the IPA Link control file. The directive is
ignored, and processing continues.

User Response: Correct the specified directive in the
IPA Link control file.

CCN2053 IPA Link control file: &1.

Where: &1 is the detailed message text.

Explanation: An error was detected in the IPA Link
control file. Processing is terminated.

User Response: Correct the specified IPA Link control
file error.

CCN2059 IPA Link control file: INTERNAL
COMPILER ERROR - &1.

Where: &1 is the detailed message text.

Explanation: An internal compiler error occurred
during processing of the IPA Link control file.

User Response: Contact your Service Representative
and provide the detailed message text.

CCN2060 CSECT name entry &1 (″&2″) is not
unique. It conflicts with entry &3.

Where: &1 and &3 are CSECT name entry numbers,
&2 is the CSECT name entry.

Explanation: The specified CSECT name prefix entry
in the IPA Link control file duplicates an previous
CSECT name prefix entry.

User Response: Provide a unique value for the
CSECT name prefix that caused the conflict.

CCN2061 A CSECT name prefix is not specified
for partition &1. The CSECT option is
active.

Where: &1 is the number of the current partition.

Explanation: The CSECT option is active, which
requires that a CSECT name prefix entry be specified in
the IPA Link control file for each partition in the
generated object module. A system-generated name
prefix has been provided for the current partition.

User Response: Provide one or more additional
CSECT name prefixes so that each partition will have a
unique name.

CCN2062 A CSECT name prefix is not specified
for partition &1.

Where: &1 is the number of the current partition.

Explanation: One or more CSECT name prefixes
were specified in the IPA Link control file, but there were
insufficient entries for all partitions in the generated
object module. The CSECT option is not active, so
these missing names are not considered an error. A
system-generated name prefix has been provided for
the current partition.

User Response: Provide one or more additional
CSECT name prefixes so that each partition will have a
unique name.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 41

CCN2100 No object files were specified as input
to the IPA Link step.

Explanation: No object files were specified for IPA
Link step processing.

User Response: Specify at least one object file.

CCN2101 No IPA object was found.

Explanation: IPA object information was not found
during IPA Link step processing.

User Response: Ensure that the appropriate object
files include IPA object information.

CCN2102 IPA object information is missing ″&1″
records.

Where: &1 is an object record type.

Explanation: A damaged IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CCN2103 IPA object information has invalid ″&1″
record.

Where: &1 is an object record type.

Explanation: A damaged IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CCN2104 Object information is missing ″&1″
records.

Where: &1 is an object record type.

Explanation: A damaged non-IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CCN2105 Object information has an invalid ″&1″
record.

Where: &1 is an object record type.

Explanation: A damaged non-IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CCN2106 An error was encountered during
object information processing.

Where: &1 is an object record type.

Explanation: A damaged or incompatible object file
was encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CCN2107 ″&1″ is not the first symbol on the
object record.

Where: &1 is an object record type.

Explanation: A damaged IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CCN2108 Object information has incorrect
format.

Explanation: An object file with an incorrect format
was encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CCN2109 Generated file is too big. Reduce
partition size or turn off IPA.

Explanation: The file generated by IPA exceeds
encoding limits.

User Response: Relink with a reduced partition size
or without IPA.

CCN2110 ″&1″ IPA Link control statement has no
specifications.

Where: &1 is either INCLUDE, LIBRARY, AUTOCALL,
IMPORT or ENTRY.

Explanation: An IPA Link control statement object
record without any specifications was encountered
during processing. The record is ignored. Processing
continues.

User Response: If the IPA Link control statement is
required, provide appropriate INCLUDE, LIBRARY, or
AUTOCALL, IMPORT or ENTRY specifications and
repeat the step. If the record is not required, the
warning message can be removed by deleting the
invalid record.

42 z/OS V1R2.0 C/C++ Messages

CCN2111 Invalid syntax specified on ″&1″ IPA
Link control statement.

Where: &1 is either INCLUDE, LIBRARY, AUTOCALL,
IMPORT, ENTRY, or UNKNOWN.

Explanation: An IPA Link control statement object
record with invalid syntax was encountered during
processing. The record is processed up to the syntax
error and the remainder of the record is ignored.
Processing continues. If unmatched quotes were
encountered, the IPA LINK control statement type will
be listed as ″UNKNOWN″.

User Response: If the IPA Link control statement is
required, correct the syntax errors and repeat the step.
If the record is not required, the warning message can
be removed by deleting the invalid record.

CCN2112 Continuation record missing for ″&1″
IPA Link control statement.

Where: &1 is the IPA Link control statement type.

Explanation: An IPA Link control statement object
record of type &1 was encountered with the continuation
column set, but there was no subsequent record or the
subsequent record was not a valid continuation record.
The record is ignored and processing continues.

User Response: Add the appropriate continuation
record, or set continuation column 72 to blank if no
continuation record is required.

CCN2113 Continuation records not allowed for
″&1″ IPA Link control statement. This
statement was ignored.

Where: &1 is the IPA Link control statement type.

Explanation: An IPA Link control statement of type &1
had a nonblank character in column 72. Information for
a statement of this type must be specified in one record,
so continuation of this record is not valid. The statement
is ignored and IPA Link step processing continues.

User Response: Correct the record if necessary, set
continuation column 72 to blank, and repeat the step.

CCN2114 More than one ″&1″ IPA Link control
statement found.

Where: &1 is the IPA Link control statement type.

Explanation: More than one IPA Link control
statement object record of type &1 was encountered
during the processing of &2.

User Response: No recovery is necessary unless the
incorrect IPA Link control statement is selected by IPA
Link error recovery, or incorrect processing was
performed. In this case, remove the offending record
and repeat the step.

CCN2115 ″&1″ IPA Link control statement is
ignored.

Where: &1 is the control statement type.

Explanation: An IPA Link control statement of type &1
was found to be invalid. The record is ignored and
processing continues.

User Response: Correct the record if necessary, set
continuation column 72 to blank, and repeat the step.

CCN2116 An error occurred processing the ″&1″
IPA Link control statement.

Where: &1 is either INCLUDE, LIBRARY, AUTOCALL,
IMPORT or ENTRY.

Explanation: An error was encountered during
processing of the IPA Link control statement. The record
is ignored and processing continues.

User Response: Ensure that the files referenced by
this IPA Link control statement object record are
available and in the correct format. If the problem
persists, call your Service Representative.

CCN2117 ″&1″ IPA Link control statement
specification not supported.

Where: &1 is either INCLUDE, LIBRARY, AUTOCALL,
IMPORT or ENTRY.

Explanation: An IPA Link control statement with a
specification syntax that is unsupported by IPA Link was
encountered during processing. The record is processed
up to this specification, and the remainder of the record
is ignored. Processing continues.

User Response: Alter the specification to a format
supported by IPA Link, or remove the specification. If
the record is not required, the warning message can be
removed by deleting the invalid record.

CCN2119 Noobject files used in non-IPA link
step.

Explanation: One or more files generated with
″NOOBJECT″ were being linked directly by the linker.

User Response: Recompile and link with ″OBJECT″
or recompile the file containing the entry point with IPA.

CCN2120 IPA Link control statement has invalid
syntax:

Explanation: An IPA Link control statement object
record (related to DLL resolution) with invalid syntax
was encountered during processing.

User Response: Prelink the DLL and generate a valid
definition side-deck file.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 43

CCN2121 IPA Link control statement not properly
continued:

Explanation: An IPA Link control statement object
record (related to DLL resolution) with the continuation
column set was encountered, but there was no
subsequent record or the subsequent record was not a
valid continuation record. The record is ignored and
processing continues.

User Response: Prelink the DLL and generate a valid
definition side-deck file.

CCN2122 Module name ″&1″ chosen for
generated ″IMPORT″ IPA Link control
statements.

Where: &1 is a module name.

Explanation: The default name TEMPNAME was
assigned to the module in the DLL definition side-deck
file.

User Response: Provide a ″NAME″ IPA Link control
statement.

CCN2125 File ″&1″ is sequential format. The
member name ″&2″ can not be
specified on the ″&3″ IPA Link control
statement.

Where: &1 is a file name. &2 is a member name. &3
is INCLUDE.

Explanation: An IPA Link control statement
specification is syntactically correct, but is incorrect for
the sequential file which has been allocated. This
specification is ignored, and processing continues.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation or IPA
Link control statement as necessary and repeat the
step.

CCN2126 File ″&1″ is partitioned format. A
member name must be specified on
the ″&2″ IPA Link control statement.

Where: &1 is a file name. &2 is INCLUDE.

Explanation: An IPA Link control statement
specification is syntactically correct, but is incorrect for
the partitioned file which has been allocated. This
specification is ignored, and processing continues.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation or IPA
Link control statement as necessary and repeat the
step.

CCN2127 File ″&1″ is sequential format. A
partitioned file or OE archive is
required for a ″&2″ IPA Link control
statement.

Where: &1 is a file name. &2 is LIBRARY.

Explanation: An IPA Link control statement
specification is syntactically correct, but the
corresponding file is sequential format. This
specification is ignored, and processing continues.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation as
necessary and repeat the step.

CCN2128 File ″&1″ is sequential format. A
partitioned file or OE archive is
required for Autocall processing.

Where: &1 is a file name.

Explanation: The specified file is allocated to a
sequential file, and is unavailable for autocall
processing.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation as
necessary and repeat the step.

CCN2130 A ″RENAME″ IPA Link control
statement can not be used for short
name ″&1″.

Where: &1 is a short name.

Explanation: A ″RENAME″ IPA Link control statement
object record that attempted to rename a short name &1
to another name was encountered. ″RENAME″
statements are only valid for long names for which there
are no corresponding short names. The ″RENAME″
statement is ignored and processing continues.

User Response: The warning message can be
removed by deleting the invalid ″RENAME″ statement.

CCN2131 Multiple ″RENAME″ IPA Link control
statements are found for ″&1″. The first
valid one is used.

Where: &1 is a name.

Explanation: More than one ″RENAME″ IPA Link
control statement object record was encountered for
name &1. The first ″RENAME″ statement with a valid
output name is chosen. The ″RENAME″ statement is
ignored and processing continues.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object File Map”
section of the listing to determine which output name
was chosen. If it was not the intended name, remove
the duplicate ″RENAME″ statements and repeat the
step.

44 z/OS V1R2.0 C/C++ Messages

CCN2132 May not ″RENAME″ long name ″&1″ to
another long name ″&2″.

Where: &1 and &2 are both long names.

Explanation: A ″RENAME″ IPA Link control statement
object record that attempted to rename a long name &1
to another long name &2 was encountered. The
″RENAME″ statement is ignored and processing
continues.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object File Map”
section of the listing to determine which output name
was chosen. If it was not the intended name, replace
the invalid ″RENAME″ statement with a valid output
name and repeat the step. The warning message can
be removed by deleting the invalid RENAME statement.

CCN2133 May not ″RENAME″ defined long name
″&1″ to defined name ″&2″.

Where: &1 is a long name. &2 is a defined name.

Explanation: A ″RENAME″ IPA Link control statement
object record that attempted to rename a defined long
name &1 to another defined name &2 was encountered.
The ″RENAME″ statement is ignored and processing
continues.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object File Map”
section of the listing to determine which output name
was chosen. If it was not the intended name, replace
the invalid ″RENAME″ statement with a valid output
name and repeat the step. The warning message can
be removed by deleting the invalid RENAME statement.

CCN2134 ″RENAME″ of ″&1″ to ″&2″ is ignored
since ″&2″ is the target of another
″RENAME″.

Where: &1 is a long name. &2 is a defined name.

Explanation: Multiple ″RENAME″ IPA Link control
statement object records that attempted to rename two
different names to the same name &2 were
encountered. The ″RENAME″ statement is ignored and
processing continues.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object File Map”
section of the listing to determine which name was
renamed to &2. If it was not the intended name, change
the name and repeat the step. The warning message
can be removed by deleting the extra ″RENAME″
statements.

CCN2140 ″&1″ is mapped to ″&2″ by the
IPA(UPCASE) option. ″&3″ is an
alternative matching definition name.

Where: &1, &2 and &3 are names.

Explanation: ″&1″ is an external symbol reference
that maps to multiple definitions due to the
IPA(UPCASE) option. Definition ″&2″ was selected.
″&3″ is another definition which matches this name, but
was not used.

User Response: If both names (&1 and &2)
correspond to the same object the warning can be
ignored. If the names do not correspond to the same
object or if the warning is to be removed, do one of the
following:

v Change one of the names in the source routine.

v Use #pragma map in the source routine for one of
the names.

CCN2141 ″&1″ is mapped to ″&2″.

Where: &1 and &2 are names.

Explanation: External name ″&1″ has been replaced
by ″&2″. IPA Link processing required a name that was
limited to 8 characters.

User Response: None. If you require a specific
external name for ″&1″, use #pragma map in the
program source. Any additional names that were
mapped to ″&1″ (and hence ″&2″) because of
IPA(UPCASE) will require equivalent #pragma map
statements.

CCN2142 Unable to map ″&1″ and ″&2″ to a
common name during IPA(UPCASE)
processing.

Where: &1 and &2 are names.

Explanation: Due to references by non-IPA objects, a
common external name can not be determined during
IPA(UPCASE) processing. This will occur if both ″&1″
and ″&2″ are referenced by non-IPA objects, or if either
is referenced by non-IPA objects and the common name
is longer than 8 characters.

User Response: Modify the program source so that
the external names are consistent, and 8 characters or
less in length.

CCN2143 Unable to map ″&1″ to ″&2″ within
same Compilation Unit during
IPA(UPCASE) processing.

Where: &1 and &2 are names.

Explanation: ″&1″ is an external symbol that maps to
the symbol ″&2″ within the same Compilation Unit due
to the IPA(UPCASE) option. Mapping of symbols in this
manner is not supported.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 45

User Response: Modify the program source so that
the external names are consistent. If IPA(UPCASE)
resolution is desired, split the program source so that
each symbol is defined in a different Compilation Unit.

CCN2150 Invalid C370LIB-directory encountered.

Explanation: The specified library file contains an
invalid or damaged C370LIB-directory.

User Response: Use the C370LIB DIR command to
recreate the C370LIB-directory, and repeat the step.

CCN2151 Library does not contain a
C370LIB-directory.

Explanation: The specified library file does not contain
a C370LIB-directory required to perform the command.

User Response: The library was not created with the
C370LIB command. Use the C370LIB DIR command to
create the C370LIB-directory, and repeat the step.

CCN2152 Member ″&1″ not found in library.

Where: &1 is a library member name.

Explanation: The specified member &1 was not found
in the library. Processing continues.

User Response: Use the C370LIB MAP command to
display the names of library members.

CCN2153 Unable to access library file.

Explanation: An error was encountered during
processing of the specified ″LIBRARY″ IPA Link control
statement. The record is ignored and processing
continues.

User Response: Ensure that the files referenced by
this IPA Link control statement object record are
available and in the correct format. If the problem
persists, call your Service Representative.

CCN2155 &1 sequential files in library ″&2″
allocation were ignored.

Where: &1 is the number of sequential files. &2 is a
library DD name.

Explanation: When the list of files allocated to the
specified DD was extracted, both sequential and
partitioned format files were found. The sequential files
were ignored.

User Response: Correct the library allocation to
eliminate the sequential files.

CCN2160 Invalid symbol table encountered in
archive library.

Explanation: The specified archive library file contains
invalid information in its symbol table. Processing
continues.

User Response: Rebuild the archive library.

CCN2161 Archive library does not contain a
symbol table.

Explanation: The symbol table for the specified
archive library file could not be found.

User Response: Rebuild the archive library.

CCN2170 Unresolved ″IMPORT″ references are
detected.

Explanation: Unresolved objects were encountered at
IPA Link processing termination. Other user objects are
required.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object Resolution
Warnings” section of the listing to find the objects in
question. To correct unresolved references to user
objects, include the user objects during IPA Link
processing.

CCN2171 Unresolved ″IMPORT″ references are
detected:

Explanation: The listed unresolved objects were
encountered at IPA Link processing termination. Other
user objects are required.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object Resolution
Warnings” section of the listing to find the objects in
question. To correct unresolved references to user
objects, include the user objects during IPA Link
processing.

CCN2172 Unresolved references could not be
imported.

Explanation: The same symbol was referenced in
both DLL and non-DLL code. The DLL reference could
have been satisfied by an ″IMPORT″ IPA Link control
statement which was processed, but the non-DLL
reference could not.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object Resolution
Warnings” section of the listing to find the symbols in
question. You must either supply a definition for the
referenced symbol, or use the DLL compiler option to
recompile the code containing the non-DLL reference so
that it becomes a DLL reference.

46 z/OS V1R2.0 C/C++ Messages

CCN2173 Unresolved references could not be
imported:

Explanation: The listed symbols were referenced in
both DLL and non-DLL code. The DLL reference could
have been satisfied by an ″IMPORT″ IPA Link control
statement which was processed, but the non-DLL
reference could not.

User Response: You must either supply a definition
for the referenced symbol, or use the DLL compiler
option to recompile the code containing the non-DLL
reference so that it becomes a DLL reference.

CCN2174 Duplicate ″IMPORT″ definitions are
detected.

Explanation: A name referenced in DLL code was not
defined within the application, but more than one
″IMPORT″ IPA Link control statement was detected with
that symbol name. The first one encountered was used.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object Resolution
Warnings” section of the listing to find the objects in
question, and define these objects once.

CCN2175 Duplicate ″IMPORT″ definitions are
detected:

Explanation: The listed objects were defined multiple
times.

User Response: Define these objects once.

CCN2177 ″ENTRY″ symbol ″&1″ not found.

Where: &1 is a symbol name.

Explanation: An ″ENTRY″ IPA Link control statement
object record that attempted to specify a program entry
point was encountered, but no symbol by this name is
present in the application program.

User Response: If the IPA Link control statement is
required, provide an object file which defines the
symbol, and repeat the step. If the record is not
required, the error message can be removed by deleting
the invalid record.

CCN2178 ″ENTRY″ symbol ″&1″ not valid.

Where: &1 is a symbol name.

Explanation: An ″ENTRY″ IPA Link control statement
object record that attempted to specify a program entry
point was encountered, but the specified symbol is a
reference, or aggregate member.

User Response: If the IPA Link control statement is
required, provide an object file which defines a valid
symbol, and repeat the step. If the record is not
required, the error message can be removed by deleting
the invalid record.

CCN2180 Load Module information has invalid
″&1″ record.

Where: &1 is an Load Module record type.

Explanation: A damaged or incompatible Load Module
library member was encountered during IPA Link
processing.

User Response: Recompile the source file and retry
IPA Link processing. If the problem persists, call your
Service Representative.

CCN2181 An error was encountered during Load
Module information processing.

Where: &1 is an Load Module record type.

Explanation: A damaged or incompatible Load Module
library member was encountered during IPA Link
processing.

User Response: Recompile the source file and retry
IPA Link processing. If the problem persists, call your
Service Representative.

CCN2182 Load Module information has incorrect
format.

Explanation: A Load Module library member with an
incorrect format was encountered during IPA Link
processing.

User Response: Recompile the source file and retry
IPA Link processing. If the problem persists, call your
Service Representative.

CCN2183 Program Object file format is not
supported by IPA Link step processing.

Explanation: During the link portion of IPA Link step
processing, an attempt was made to extract object
information from a Program Object file. IPA Link step
processing supports object information in the form of
object modules, and Load Module library members.
Program Object files which are generated by the
Program Management Binder are not supported.

User Response: Repackage the Program Object as
either an object module or a Load Module library
member, and retry IPA Link processing.

CCN2184 IPA Object file ″&1″ has been compiled
with an incompatible version of IPA.

Explanation: The IPA Object format in ″&1″ is
incompatible with the current compiler.

User Response: Recompile the file with the current
compiler.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 47

CCN2185 The correct decryption key for object
file ″&1″ was not specified.

Explanation: The file ″&1″ was encrypted with
different key than the one(s) specified.

User Response: Include the correct key or link without
IPA.

CCN2200 Unresolved references to writable
static objects are detected.

Explanation: Undefined writable static objects were
encountered at IPA Link step processing termination.
Other user objects are required.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object Resolution
Warnings” section of the listing to find the objects in
question, and include these objects during IPA Link
processing.

CCN2201 Undefined writable static objects are
detected:

Explanation: The listed writable static objects were
undefined at IPA Link processing termination.

User Response: Include these objects during IPA Link
processing.

CCN2202 Unresolved references to writable
static objects are detected:

Explanation: Undefined writable static objects or
unresolved objects referring to writable static objects
were encountered at IPA Link processing termination.
Other user objects are required.

User Response: Include these objects during IPA Link
processing.

CCN2203 Unresolved references to objects are
detected.

Explanation: Unresolved objects were encountered at
IPA Link processing termination. Other user objects are
required.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object Resolution
Warnings” section of the listing to find the objects in
question. To correct unresolved references to user
objects, include the required objects during IPA Link
processing.

CCN2204 Unresolved references to objects are
detected:

Explanation: The listed unresolved objects were
encountered at IPA Link processing termination. Other
user objects are required.

User Response: To correct the unresolved references,
include the required objects during IPA Link step
processing.

CCN2205 Unresolved reference to symbol ″&1″.

Explanation: The listed unresolved objects were
encountered at IPA Link processing termination. Other
user objects are required.

User Response: To correct the unresolved references,
include the required objects during IPA Link step
processing.

CCN2206 Unresolved reference to symbol ″&1″.

Explanation: The listed unresolved objects were
encountered at IPA Link processing termination. Other
user objects are required.

User Response: To correct the unresolved references,
include the required objects during IPA Link step
processing.

CCN2210 Duplicate writable static objects are
detected.

Explanation: Writable static objects were defined
multiple times.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object Resolution
Warnings” section of the listing to find the objects in
question, and define the required objects once.

CCN2211 Duplicate writable static objects are
detected:

Explanation: The listed writable static objects were
defined multiple times.

User Response: Define these objects once.

CCN2212 Duplicate objects are detected.

Explanation: Objects were defined multiple times.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the “Object Resolution
Warnings” section of the listing to find the objects in
question, and define these objects once.

CCN2213 Duplicate objects are detected:

Explanation: The listed objects were defined multiple
times.

User Response: Define the objects once.

48 z/OS V1R2.0 C/C++ Messages

CCN2220 Duplicate writable static object ″&1″ is
detected with different sizes. The
largest size is used.

Where: &1 is a writable static object name.

Explanation: The listed writable static object was
defined multiple times with different sizes. The larger of
the different sizes was used. Incorrect execution could
occur unless the object is defined consistently.

User Response: Define the objects consistently.

CCN2221 Duplicate object ″&1″ is detected with
different sizes. The largest size is
used.

Where: &1 is an object name.

Explanation: The listed object was defined multiple
times with different sizes. The larger of the different
sizes is used. Incorrect execution could occur unless
the object is defined consistently.

User Response: Define these objects consistently.

CCN2229 No exported symbols found.

Explanation: After the IPA object files were linked, an
unsuccessful attempt was made to locate at least one
exported symbols.

User Response: Specify at least one exported symbol
contained in the IPA object files.

CCN2230 Program entry point not found.

Explanation: After the IPA object files were linked, an
unsuccessful attempt was made to identify the program
entry point (normally the ″main″ function).

User Response: Provide the IPA object file containing
the program entry point.

CCN2231 More than one entry point was found.

Explanation: After the IPA object files were linked,
multiple possible program entry points were found.

User Response: Eliminate the IPA object files
containing the extra program entry points.

CCN2232 Duplicate definition of symbol ″&1″
ignored.

Where: &1 is the symbol name.

Explanation: A duplicate definition of the specified
symbol has been encountered in the specified file. It is
ignored.

User Response: If possible, eliminate the duplicate
symbol definition from the set of input files provided to
the IPA Link step.

CCN2233 Duplicate definition of symbol ″&1″ in
import list is ignored.

Where: &1 is the symbol name.

Explanation: A duplicate definition of the specified
symbol has been encountered in an import list in the
specified file. It is ignored.

User Response: Eliminate the duplicate import
definition for the specified symbol.

CCN2240 IPA object files ″&1″ and ″&2″ have
been compiled with differing settings
for the ″&3″ option.

Where: &1 and &2 are object file names, and &3 is an
option name.

Explanation: The IPA object files were compiled using
conflicting settings for the specified option. A final
common option setting will be selected. Alternatively, a
common override can be specified during IPA Link
invocation.

User Response: Ensure that the final option setting is
appropriate. The warning message can be removed by
recompiling one or both source files with the same
option setting.

CCN2241 The ″&1″ option will be used.

Where: &1 is an option name.

Explanation: This is the final common option setting
selected after IPA object files were found to be in
conflict.

User Response: Ensure that the final option setting is
appropriate. The warning message can be removed by
recompiling one or both source files with the same
option setting.

CCN2242 IPA object files ″&1″ and ″&2″ contain
code targeted for different machine
architectures.

Where: &1 and &2 are object file names.

Explanation: The IPA object files were compiled with
conflicting machine architectures. A final common
machine architecture will be selected.

User Response: Ensure that the final machine
architecture is appropriate. The warning message can
be removed by recompiling one or both source files so
that consistent ARCH options that specify the same
machine architecture are used.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 49

CCN2243 The ″&1″ machine architecture will be
used.

Where: &1 is a machine architecture id.

Explanation: This is the final machine architecture
selected after IPA object files were found to be in
conflict.

User Response: Ensure that the final machine
architecture is appropriate. The warning message can
be removed by recompiling one or both source files so
that consistent ARCH options that specify the same
machine architecture are used.

CCN2244 IPA object files ″&1″ and ″&2″ contain
code targeted for different operating
environments.

Where: &1 and &2 are object file names.

Explanation: The IPA object files were compiled using
conflicting operating environments. A final common
operating environment will be selected.

User Response: Ensure that the final target operating
environment is appropriate. The warning message can
be removed by recompiling one or both source files for
the same operating environment.

CCN2245 The ″&1″ operating environment will be
used.

Where: &1 is an operating environment id.

Explanation: This is the final operating environment
selected after IPA object files were found to be in
conflict.

User Response: Ensure that the final target operating
environment is appropriate. The warning message can
be removed by recompiling one or both source files for
the same operating environment.

CCN2246 IPA object files ″&1″ and ″&2″ were
generated from different source
languages.

Where: &1 and &2 are object file names.

Explanation: The IPA object files were produced by
compilers for different languages. The IPA object has
been transformed as required to handle this situation.

User Response: None.

CCN2247 IPA object files ″&1″ and ″&2″ were
generated by different compiler
versions.

Where: &1 and &2 are object file names.

Explanation: The IPA object files were produced by
different versions of the compiler. The older IPA object
has been transformed to the later version.

User Response: None.

CCN2248 The code page for one or more IPA
object files differs from the code page
″&1″, used during IPA Link processing.

Where: &1 is a code page name.

Explanation: IPA object files contain code page
identification if the LOCALE option is active when they
are originally compiled. During IPA Link processing with
the LOCALE option active, one or more IPA object files
were encountered that had a code page (specified via
the LOCALE option) which differs from that used during
IPA Link processing. Character data will remain in the
code page in which it was originally compiled.

User Response: None.

CCN2250 Option ″&1″ not available because one
or more IPA object files were compiled
with option ″&2″.

Where: &1 and &2 are option names.

Explanation: The specified option is not available
during code generation for the current partition, because
one or more IPA object files contain insufficient
information to support it. A final common option will be
selected.

CCN2260 Subprogram specified exceeds size
limit: &1

Where: &1 is the Subprogram name.

Explanation: The ACU for the subprogram exceeds
the LIMIT specified in the INLINE suboption.

User Response: Increase LIMIT if it is feasible to do
so.

CCN2261 Subprogram specified is (or grows) too
large to be inlined: &1

Where: &1 is the subprogram name.

Explanation: This occurs when a subprogram is too
large to be inlined into another subprogram.

User Response: Use #pragma inline if it is feasible to
do so.

CCN2262 Some calls to subprogram specified
cannot be inlined: &1

Where: &1 is the subprogram name.

Explanation: At least one call is either directly
recursive, or the wrong number of parameters were
specified.

User Response: Check all calls to the subprogram
specified and make sure that the number of parameters
match the subprogram definition.

50 z/OS V1R2.0 C/C++ Messages

CCN2263 Automatic storage for subprogram
specified increased to over &1 bytes:
&2

Where: &1 is the automatic storage limit. &2 is the
subprogram name.

Explanation: The size of automatic storage for
subprogram increased by at least 4 KB due to inlining.

User Response: If feasible to do so, prevent the
inlining of subprograms that have large auto storage.

CCN2265 Inlining of specified subprogram failed
due to the presence of a global label:
&1

Where: &1 is the subprogram name.

Explanation: At least one call could not be inlined due
to the presence of a global label.

User Response: Minimize the use of global labels in
your application. Their presence will inhibit global
inlining.

CCN2266 Inlining of specified subprogram failed
due to the presence of a C++ exception
handler: &1

Where: &1 is the subprogram name.

Explanation: At least one call could not be inlined due
to the presence of a C++ exception handler.

User Response: Minimize the use of C++ exception
handlers in your application. Their presence will inhibit
global inlining.

CCN2267 Inlining of specified subprogram failed
due to the presence of variable
arguments: &1

Where: &1 is the subprogram name.

Explanation: At least one call could not be inlined due
to the presence of variable arguments.

User Response: None.

CCN2268 Inlining of subprogram ″&1″ into
subprogram ″&2″ failed due to a
conflict in options settings.

Where: &1 and &2 are subprogram names.

Explanation: The specified call could not be inlined
due to incompatible options settings for the IPA object
files that contain the two programs.

User Response: Use compatible options during the
IPA Compile step.

CCN2269 Inlining of subprogram ″&1″ into
subprogram ″&2″ failed due to a type
mismatch in argument ″&3″.

Where: &1 and &2 are subprogram names. &3 is the
parameter index

Explanation: The specified call could not be inlined
due to incompatible types for the specified argument
number, where ″&1″ is the first argument.

User Response: Correct the program to use
compatible types for all arguments.

CCN2270 Subprogram ″&1″ has been inlined into
subprogram ″&2″. One or more
unexpected extra parameters were
ignored.

Where: &1 and &2 are subprogram names.

Explanation: The specified call was inlined, but one or
more parameters on the call were not required and
were ignored.

User Response: Eliminate the extra parameters.

CCN2271 Subprogram ″&1″ has been inlined into
subprogram ″&2″. One or more
arguments were not supplied, so the
values are undefined.

Where: &1 and &2 are subprogram names.

Explanation: The specified call was inlined, but one or
more parameters were omitted on the call. Values for
these arguments are indeterminate, so the operation of
the subprogram is undefined.

User Response: Specify all parameters actually
required by the called subprogram.

CCN2280 A type mismatch was detected for
symbol ″&1″.

Where: &1 is a subprogram name.

Explanation: An instance of the specified subprogram
was found where one or more parameters were of an
unexpected type.

User Response: Correct the program to use
parameter types compatible with the function definition. .

CCN2281 Function return types ″&1″ and ″&2″
for subprogram ″&3″ do not match.

Where: &1 and &2 are return type names. &3 is a
subprogram name.

Explanation: An instance of the specified subprogram
was found with an unexpected type for the function
return value.

User Response: Correct the program to use a return

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 51

type compatible with the function definition.

CCN2282 Subprogram ″&1″ has the wrong
number of formal parameters.

Where: &1 is a subprogram name.

Explanation: The number of formal parameters for the
definition of the given subprogram does not match the
number of formal parameters for the declaration of the
subprogram.

User Response: Correct the program to use a
consistent number of formal parameters for the
subprogram.

CCN2283 A linkage mismatch was detected for
symbol ″&1″.

Where: &1 is a symbol name.

Explanation: An instance of the specified subprogram
was found which uses a linkage incompatible with the
calling function.

User Response: Correct the program to ensure
consistent linkage across all objects.

CCN2299 Some optimizations may be inhibited.

Explanation: During optimization of the IPA object, a
problem was encountered that prevent the use of all
available optimization techniques. These specific
problems are identified in separate messages.

User Response: Correct the problem which inhibits
optimization.

CCN2300 Export symbol ″&1″ not found.

Where: &1 is a symbol name.

Explanation: An ″export″ directive entry for the
specified symbol was present in the IPA Link control file,
but no symbol by this name is present in the application
program.

User Response: Correct the IPA Link control file
directive.

CCN2301 External subprogram ″&1″ not found.
Could not mark as ″pure″.

Where: &1 is a subprogram name.

Explanation: A ″pure″ directive entry for the specified
subprogram was present in the IPA Link control file, but
no subprogram by this name is present in the
application program.

User Response: Correct the IPA Link control file
directive.

CCN2302 External subprogram ″&1″ not found.
Could not mark as ″isolated″.

Where: &1 is a subprogram name.

Explanation: A ″isolated″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

CCN2303 External subprogram ″&1″ not found.
Could not mark as ″safe″.

Where: &1 is a subprogram name.

Explanation: A ″safe″ directive entry for the specified
subprogram was present in the IPA Link control file, but
no subprogram by this name is present in the
application program.

User Response: Correct the IPA Link control file
directive.

CCN2304 External subprogram ″&1″ not found.
Could not mark as ″unknown″.

Where: &1 is a subprogram name.

Explanation: An ″unknown″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

CCN2305 External subprogram ″&1″ not found.
Could not mark as ″low frequency″.

Where: &1 is a subprogram name.

Explanation: A ″lowfreq″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

CCN2306 External subprogram ″&1″ not found.
Could not mark as ″an exit″.

Where: &1 is a subprogram name.

Explanation: A ″exits″ directive entry for the specified
subprogram was present in the IPA Link control file, but
no subprogram by this name is present in the
application program.

User Response: Correct the IPA Link control file
directive.

52 z/OS V1R2.0 C/C++ Messages

CCN2307 External symbol ″&1″ not found. Could
not mark as ″retain″.

Where: &1 is a symbol name.

Explanation: A ″retain″ directive entry for the specified
symbol was present in the IPA Link control file, but no
symbol by this name is present in the application
program.

User Response: Correct the IPA Link control file
directive.

CCN2308 Regular expression ″&1″ error: &2.

Where: &1 is a regular expression.

Explanation: The regular expression is incorrectly
specified.

User Response: Correct the regular expression ″&1″.

CCN2310 External subprogram ″&1″ not found.
Could not mark as ″inline″.

Where: &1 is a subprogram name.

Explanation: An ″inline″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

CCN2311 EXternal subprogram ″&1″ not found.
Could not mark as ″do not inline″.

Where: &1 is a subprogram name.

Explanation: A ″noinline″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

CCN2312 Could not inline calls from ″&1″ to ″&2″
as neither external subprogram was
found.

Where: &1 and &2 are subprogram names.

Explanation: An ″inline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no subprograms by these
names are present in the application program.

User Response: Correct the IPA Link control file
directive.

CCN2313 Could not inhibit inlining calls from
″&1″ to ″&2″ as neither external
subprogram was found.

Where: &1 and &2 are subprogram names.

Explanation: A ″noinline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no subprograms by these
names are present in the application program.

User Response: Correct the IPA Link control file
directive.

CCN2314 Could not inline calls from ″&1″ to ″&2″
as external subprogram ″&3″ was not
found.

Where: &1, &2 and &3 are subprogram names.

Explanation: An ″inline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no subprogram with the
specified name is present in the application program.

User Response: Correct the IPA Link control file
directive.

CCN2315 Could not inhibit inlining calls from
″&1″ to ″&2″ as external subprogram
″&3″ was not found.

Where: &1, &2 and &3 are subprogram names.

Explanation: A ″noinline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no subprogram with the
specified name is present in the application program.

User Response: Correct the IPA Link control file
directive.

CCN2316 Could not find any calls from ″&1″ to
″&2″ to inline.

Where: &1 and &2 are subprogram names.

Explanation: An ″inline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no such calls are present in the
application program.

User Response: Delete the IPA Link control file
directive.

CCN2317 Could not find any calls from ″&1″ to
″&2″ to inhibit from inlining.

Where: &1 and &2 are subprogram names.

Explanation: A ″noinline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no such calls are present in the
application program.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 53

User Response: Delete the IPA Link control file
directive.

CCN2320 The minimum size of partition &1
exceeds the partition size limit.

Where: &1 is the number of the current partition.

Explanation: The program information which must be
contained within the current partition is larger than the
current partition size limit. This may be because the
partition contains a single large subprogram.

User Response: Use the IPA Link ″partsize″ directive
to specify a larger partition size limit.

CCN2340 Code generation was not performed
due to previously detected errors.
Object file not created.

Explanation: The completion of the IPA Link step is
not possible due to errors that were previously detected.
The generation of code and data from the IPA object
information will not be performed, and no object file will
be generated.

User Response: Eliminate the cause of the error
conditions.

CCN2341 Code generation for partition &1
terminated due to previous errors.

Where: &1 is the number of the current partition.

Explanation: The generation of object code and data
for the current partition has been terminated due to
error conditions detected during processing. Processing
continues to allow further errors to be detected, but an
incomplete object file will be generated.

User Response: Eliminate the cause of the error
conditions.

CCN2342 Code generation for partition &1
bypassed due to previous errors.

Where: &1 is the number of the current partition.

Explanation: The generation of object code and data
for the current partition has been bypassed due to error
conditions detected when processing a previous
partition. Processing continues to allow further errors to
be detected, but an incomplete object file will be
generated.

User Response: Eliminate the cause of the error
conditions.

CCN2345 An error occurred during code
generation. The code generation return
code was &1.

Where: &1 is the code generation return code.

Explanation: During the generation of code for the
current partition, an error was detected. One or more
messages may be issued when this occurs.

User Response: Refer to the responses for these
messages, and perform the suggested error recovery
actions.

CCN2400 File ″&1″ not found.

Where: &1 is a file name.

Explanation: The compiler could not locate the
specified file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CCN2401 Object file ″&1″ not found.

Where: &1 is an object file name.

Explanation: The compiler could not locate the
specified object file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CCN2402 Library file ″&1″ not found.

Where: &1 is a library file name.

Explanation: The compiler could not locate the
specified library file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CCN2403 Archive library file ″&1″ not found.

Where: &1 is an archive library file name.

Explanation: The compiler could not locate the
specified archive library file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

54 z/OS V1R2.0 C/C++ Messages

CCN2404 IPA Link control file ″&1″ not found.

Where: &1 is an IPA Link control file name.

Explanation: The compiler could not locate the
specified IPA Link control file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CCN2406 Load Module library member ″&1″ not
found.

Where: &1 is a Load Module library member name.

Explanation: The compiler could not locate the
specified member of the Load Module library.

User Response: Ensure the member name and Load
Module library names are correct. Also, the file may be
locked by another process or access may be denied
because of insufficient permission.

CCN2407 File ″&1″ not found.

Where: &1 is a file name.

Explanation: The compiler could not locate the
specified file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CCN2408 File ″&1″ not found.

Where: &1 is a file name.

Explanation: The compiler could not locate the
specified file. Processing is terminated.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CCN2420 File ″&1″ has invalid format.

Where: &1 is a file name.

Explanation: The specified file was located, but did
not have the correct format.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Correct the file as necessary and
repeat the step.

CCN2421 Library file ″&1″ has invalid format.

Where: &1 is a library file name.

Explanation: The specified file was located, but did
not have the correct format to be recognized as an
object library.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Correct the library as necessary and
repeat the step.

CCN2422 Archive library file ″&1″ has invalid
format.

Where: &1 is an archive library file name.

Explanation: The specified file was located, but did
not have the correct format to be recognized as an
archive library.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Rebuild the archive library as
necessary and repeat the step.

CCN2423 Load Module file ″&1″ has invalid
format.

Where: &1 is a Load Module file name.

Explanation: The specified file was located, but did
not have the correct format to be recognized as a Load
Module.

User Response: Ensure the file name is correct.
Correct the Load Module library as necessary and
repeat the step.

CCN2425 File ″&1″ has invalid attributes.

Where: &1 is a file name.

Explanation: The specified file was located, but did
not have the correct attributes.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Correct the file as necessary and
repeat the step.

CCN2426 Unable to determine attributes for file
″&1″.

Where: &1 is a file name.

Explanation: The specified file was located, but the
compiler was unable to determine the file attributes.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Correct the file as necessary and
repeat the step.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 55

CCN2430 File ″&1″ is not allocated.

Where: &1 is a file name.

Explanation: The specified file is not allocated, and is
unavailable for processing.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation as
necessary and repeat the step.

CCN2431 File ″&1″ is not allocated. Autocall will
not be performed.

Where: &1 is a file name.

Explanation: The specified file is not allocated, and is
unavailable for autocall processing.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation as
necessary and repeat the step.

CCN2440 Unable to open file ″&1″, for read.

Where: &1 is a file name.

Explanation: The compiler could not open the
specified file. This file was being opened with the intent
of reading the file contents.

User Response: Ensure the file name is correct.
Ensure that the correct file is being read and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

CCN2441 Unable to open file ″&1″, for write.

Where: &1 is a file name.

Explanation: The compiler could not open the
specified file. This file was being opened with the intent
of writing new information.

User Response: Ensure the file name is correct.
Ensure that the correct file is specified. If the file is
located on a LAN drive, ensure the LAN is working
properly. Also, the file may be locked by another
process or access may be denied because of
insufficient permission.

CCN2442 An error occurred while reading file
″&1″.

Where: &1 is a file name.

Explanation: The compiler detected an error while
reading from the specified file.

User Response: Ensure that the correct file is being
read and has not been damaged. If the file is located on
a LAN drive, ensure the LAN is working properly.

CCN2443 An error occurred while writing to file
″&1″.

Where: &1 is a file name.

Explanation: The compiler detected an error while
writing to the specified file.

User Response: Ensure that the correct file is
specified. If the file is located on a LAN drive, ensure
the LAN is working properly.

CCN2444 Unable to close file ″&1″, after read.

Where: &1 is a file name.

Explanation: The compiler could not close the
specified file after reading the file contents.

User Response: Ensure the file name is correct.
Ensure that the correct file is being read and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

CCN2445 Unable to close file ″&1″, after write.

Where: &1 is a file name.

Explanation: The compiler could not close the
specified file after writing new information.

User Response: Ensure that sufficient space is
available to contain the file data. Ensure the file name is
correct. Ensure that the correct file is specified. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CCN2446 File ″&1″ is empty.

Where: &1 is a file name.

Explanation: The compiler opened the specified file,
but it was empty when an attempt was made to read
the file contents.

User Response: Ensure the file name is correct.
Ensure that the correct file is being read and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly.

CCN2447 Premature end occurred while reading
file ″&1″.

Where: &1 is a file name.

Explanation: The compiler opened the specified file
and began processing the file contents. The end of file
was reached before all data was processed. Processing
continues with the next file.

User Response: Ensure that the correct file is being

56 z/OS V1R2.0 C/C++ Messages

read and has not been damaged. If the file is located on
a LAN drive, ensure the LAN is working properly.

CCN2450 Unable to remove file ″&1″.

Where: &1 is a file name.

Explanation: The compiler could not remove the
specified file.

User Response: Ensure the file name is correct.
Ensure that the correct file is specified. If the file is
located on a LAN drive, ensure the LAN is working
properly. Also, the file may be locked by another
process or access may be denied because of
insufficient permission.

CCN2451 Unable to create temporary file ″&1″.

Where: &1 is a file name.

Explanation: The compiler could not create the
specified temporary file.

User Response: If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

CCN2460 Listing file ″&1″ is full.

Where: &1 is the listing file name.

Explanation: The compiler detected that there is
insufficient free space to continue writing to the listing
file. Compilation continues, without further updates to
the listing file.

User Response: Ensure that the correct listing file is
specified, and that there is sufficient free space. If the
file is located on a LAN drive, ensure the LAN is
working properly.

CCN2461 Listing file ″&1″ closed prematurely.

Where: &1 is the listing file name.

Explanation: The compiler detected an error while
writing to the listing file. Compilation continues, without
further updates to the listing file.

User Response: Ensure that the correct listing file is
specified. If the file is located on a LAN drive, ensure
the LAN is working properly.

CCN2462 Unable to write to temporary file ″&1″.

Where: &1 is the temporary file name.

Explanation: The compiler detected an error while
writing to the temporary file.

User Response: Ensure there is enough disk space.

CCN2463 Unable to create a temporary file.

Explanation: The compiler could not create a
temporary file.

User Response: Check the system documentation on
creating temporary files.

CCN2490 COMPILER LIMIT EXCEEDED:
Insufficient virtual storage.

Explanation: The compiler ran out of memory
attempting to compile the file. This sometimes happens
with large files or programs with large functions. Note
that very large programs limit the amount of optimization
that can be done.

User Response: Redefine your virtual storage to a
larger size. If sufficient storage is not available, you can
try various approaches, such as shut down any large
processes that are running, ensure your swap path is
large enough, try recompiling the program with a lower
level of optimization or without interprocedural analysis.

CCN2491 COMPILER ERROR: Unimplemented
feature: &1.

Explanation: An error occurred during compilation.

User Response: See the C/C++ Language Reference
for a description of supported features.

CCN2492 INTERNAL COMPILER ERROR: Error
&1 in Procedure &2.

Explanation: An internal compiler error occurred
during compilation.

User Response: Contact your Service Representative.

CCN2493 INTERNAL COMPILER ERROR: &1.

Explanation: An internal compiler error occurred
during compilation.

User Response: Contact your Service Representative.

CCN2494 SYSTEM LIMIT EXCEEDED: Too many
processes are active.

Explanation: The system ran out of processes during
the compilation of the file.

User Response: Try recompiling with fewer competing
processes, or increase the system limit.

CCN2496 Unable to create thread.

Explanation: The system was unable to create a new
thread.

User Response: Ensure there are enough system
resources to support multi-threading, and that the
system supports threads.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 57

CCN3001 INTERNAL COMPILER ERROR:
Procedure &1.

Explanation: An internal compiler error occurred
during compilation.

User Response: Contact your VisualAge for C++
Service Representative.

CCN3002 COMPILER ERROR: Unimplemented
feature: &1.

Explanation: An error occurred during compilation.

User Response: See the C/C++ Language Reference
for a description of supported features.

CCN3003 Width of a bit field of type ″&1″ cannot
exceed &2.

Explanation: The length of the bit field must not
exceed the maximum bit size of the bit field’s type.

User Response: Define the bit-field length to be less
than or equal to the maximum bit size of the bit-field
type.

CCN3004 #pragma must appear before use of
identifier &1. #pragma ignored.

Explanation: The identifier is modified by the #pragma
after the #pragma is seen.

User Response: Move the #pragma so that it appears
before the identifier is used.

CCN3005 Error in message set &1, unable to
retrieve message &2.

Explanation: Message cannot be retrieved from the
message catalog.

User Response: Check the installation procedure to
see if the message catalog has been properly installed.

CCN3006 Label &1 is undefined.

Explanation: A label must be visible in the current
function scope if it is used in an expression.

User Response: Declare a label of that name in the
current function scope.

CCN3007 ″&1″ is undefined.

Explanation: A C identifier must be declared before it
is used in an expression.

User Response: Declare an identifier of that name in
the current scope or in a higher scope.

CCN3008 The argument is not valid for the
#pragma directive.

Explanation: #pragma does not recognize the
argument.

User Response: Remove the argument or change its
format.

CCN3009 Bit-field &1 must be of type signed int,
unsigned int or int.

Explanation: The type of the bit-field is not a signed
int, unsigned int nor an int.

User Response: Define the bit-field with a type signed
int or unsigned int.

CCN3010 Macro &1 invoked with a null argument
for parameter &2.

Explanation: No argument was specified for
parameter.

User Response: Specify arguments for all macro
parameters.

CCN3012 Operand of bitwise complement must
be an integral type.

Explanation: The operand of the bitwise complement
operator does not have an integral type. Valid integral
types include: signed and unsigned char; signed and
unsigned short, long, and int; and enum.

User Response: Change the type of the operand, or
use a different operand.

CCN3013 Operand of unary + or - operator must
be an arithmetic type.

Explanation: The operand of the unary + or - operator
does not have an arithmetic type. Valid arithmetic types
include: signed and unsigned char; signed and
unsigned short, long, and int; enum, float, double, and
long double.

User Response: Change the type of the operand, or
use a different operand.

CCN3014 Operand of logical negation must be a
scalar type.

Explanation: The operand of the logical negation
operator (!) does not have a scalar type. Valid scalar
types include: signed and unsigned char; signed and
unsigned short, long, and int; enum, float, double, long
double, and pointers.

User Response: Change the type of the operand, or
use a different operand.

58 z/OS V1R2.0 C/C++ Messages

CCN3017 Operand of address operator must be
an lvalue or function designator.

Explanation: The operand of the address operator
(unary &) is not valid. The operand must be either a
function designator or an lvalue that designates an
object that is not a bit-field and is not declared with
register storage class.

User Response: Change the operand.

CCN3018 Operand of indirection operator must
be a pointer expression.

Explanation: The operand of the indirection operator
(unary *) is not a pointer.

User Response: Change the operand to a pointer.

CCN3019 Expecting an array or a pointer to
object type.

Explanation: Index operator ([]) operates only on
arrays or pointer to objects.

User Response: Change the operand.

CCN3020 Expression must be an integral type.

Explanation: The expression does not evaluate to an
integral type. Valid integral types include: signed,
unsigned and plain char, signed and unsigned short, int,
long, and enum.

User Response: Change the type of the operand.

CCN3021 Expecting struct or union.

Explanation: The left hand operand of the dot
operator (.) must have a struct or union type.

User Response: Change the operand.

CCN3022 ″&1″ is not a member of ″&2″.

Explanation: The specified member does not belong
to the structure or union given. One of the following has
occurred:

1. The right hand operand of the dot (.) operator is not
a member of the structure or union specified on the
left hand side of the operator.

2. The right hand operand of the arrow (->) operator is
not a member of the structure or union pointed to by
the pointer on the left hand side of the operator.

User Response: Change the identifier.

CCN3023 Expecting function or pointer to
function.

Explanation: The expression is followed by an
argument list but does not evaluate to a function
designator.

User Response: Change the expression to be a
function or a pointer to a function.

CCN3024 The operand of the __alignof operator
is not valid.

Explanation: The __alignof operator cannot be used
with functions, void types, bit fields, incomplete types, or
arrays of unknown size. The alignof operator cannot be
applied to an expression that has a function type or an
incomplete type, to the parenthesized name of such a
type, or to an lvalue that designates a bit-field object.

User Response: Change the operand.

CCN3025 Operand must be a modifiable lvalue.

Explanation: A modifiable lvalue is an expression
representing an object that can be changed.

User Response: Change the operand.

CCN3026 Number of initializers cannot be
greater than the number of aggregate
members.

Explanation: Too many initializers were found in the
initializer list for the indicated declaration.

User Response: Check the number of initializers and
change it to correspond to the number of declared
members. Make sure the closing brace at the end of the
initializer list is positioned correctly.

CCN3027 Function &1 cannot be initialized.

Explanation: An attempt was made to assign an initial
value to a function identifier. You can not assign a value
to a function identifier.

User Response: Remove the assignment operator
and the initializer.

CCN3028 Storage class ″&1″ cannot be used
with external data.

Explanation: The storage class is not appropriate for
this declaration. Restrictions include: 1) Storage class
specifier not allowed on aggregate members, casts,
sizeof or offsetof declarations. 2) Declarations at file
scope cannot have ’register’ or ’auto’ storage class.

User Response: Specify a different storage class.

CCN3029 #pragma ignored, identifiers are
already disjoint.

Explanation: The identifiers that are specified in the
pragma are already known to be disjoint so the pragma
is ignored.

User Response: Nothing, or remove the pragma as it
is redundant.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 59

CCN3030 Identifier &1 cannot be redeclared.

Explanation: The identifier has already been declared.

User Response: Remove one of the declarations.

CCN3031 All dimensions except the first must be
specified for a multi-dimensional array.

Explanation: Only the first dimension of an initialized
array can be unspecified. All the other dimensions must
be specified on the declaration.

User Response: Specify all the other dimensions in
the array declaration.

CCN3032 Elements of an array cannot be
functions.

Explanation: An array must be composed of elements
that are an object type. Functions are not object types
and thus cannot be elements of an array.

User Response: Use a pointer to the function, or
change the type of the element.

CCN3033 Function &1 is not valid. Function
cannot return a function.

Explanation: A function cannot have a return type of
function.

User Response: Return a pointer to the function or
specify a different return type.

CCN3034 Function &1 is not valid. Function
cannot return an array.

Explanation: A function cannot return an array and
the specified return type of the function is an array.

User Response: Return a pointer to the array or
specify a different return type.

CCN3035 Storage class ″&1″ cannot be used
with functions.

Explanation: A function can only have a storage class
of extern or static.

User Response: Remove the storage class specifier
for the function identifier, or change it to either extern or
static.

CCN3036 Range error.

Explanation: The value is outside of the valid range.

User Response: Change value to be within the
required limits.

CCN3037 Member of struct or union cannot be a
function.

Explanation: Members of structs or unions must have
object type. Functions do not have object type and
cannot be members of a struct or union.

User Response: Use a pointer to the function or
remove the function from the member list.

CCN3039 Expecting a parameter after # operator.

Explanation: The # preprocessor operator can only be
applied to a macro parameter.

User Response: Place a parameter after the # token,
or remove the token.

CCN3041 The invocation of macro &1 contains
fewer arguments than required by the
macro definition.

Explanation: The number of arguments supplied to
the macro must match the number of parameters in the
macro definition. There are not enough arguments
supplied.

User Response: Complete the specification of the
macro argument list.

CCN3043 The operand of the sizeof operator is
not valid.

Explanation: Sizeof operator cannot be used with
functions, void types, bit fields, incomplete types, or
arrays of unknown size. The sizeof operator cannot be
applied to an expression that has a function type or an
incomplete type, to the parenthesized name of such a
type, or to an lvalue that designates a bit-field object.

User Response: Change the operand.

CCN3044 Expression must be a non-negative
integer constant.

Explanation: The supplied expression must evaluate
to a non-negative integer constant.

User Response: Change the constant expression to
yield a non-negative value.

CCN3045 Undeclared identifier &1.

Explanation: You must declare a C identifier before
you use it in an expression.

User Response: Declare an identifier of that name in
the current scope or in a higher scope.

60 z/OS V1R2.0 C/C++ Messages

CCN3046 Syntax error.

Explanation: See the C/C++ Language Reference for
a complete description of C syntax rules.

User Response: Correct the syntax error and compile
again.

CCN3047 Incorrect hexadecimal escape
sequence \x. \ ignored.

Explanation: \x is used to indicate an hexadecimal
escape sequence but the sequence immediately
following is not a valid hexadecimal number.

User Response: Change the sequence to a valid
hexadecimal number.

CCN3048 Unable to initialize source conversion
from codepage &1 to codepage &2.

Explanation: An error occurred when attempting to
convert source between the codepages specified.

User Response: Ensure the codepages are correct
and that conversion between these codepages is
supported.

CCN3049 The object &1 has a size &2 which
exceeds the compiler limit &3.

Explanation: The size of the object is too large for the
compiler to represent internally.

User Response: Reduce the size of the object.

CCN3050 Return type ″&1″ in redeclaration is not
compatible with the previous return
type ″&2″.

Explanation: The second declaration of the function
declares a different return type from the first. The
declaration must be identical. When you redeclare a
function, the return type and parameter types must be
the same in both declarations.

User Response: Change the declaration of one or
both functions so that their return types are compatible.

CCN3051 Case expression must be a valid
integral constant.

Explanation: The expression in the case statement
must be a constant integral expression. Valid integral
expressions are: char, signed and unsigned int, and
enum.

User Response: Change the expression.

CCN3052 Duplicate case label for value &1.
Labels must be unique.

Explanation: Two case labels in the same switch
statement cannot evaluate to the same integer value.

User Response: Change one of the labels.

CCN3053 Default label cannot be placed outside
a switch statement.

Explanation: A statement is labeled with default,
which can only be used as a statement label within a
switch statement.

User Response: Remove the default case label, or
place it inside a switch statement. Check for misplaced
braces on a previous switch statement.

CCN3054 Switch statement cannot contain more
than one default label.

Explanation: Only one default label is allowed within a
switch statement. Nested switch statements may each
have one default label. This error may have been
caused by a default label that is not properly placed
within a nested switch statement.

User Response: Remove one of the default labels or
check for misplaced braces on nested switch
statements..

CCN3055 Case label cannot be placed outside a
switch statement.

Explanation: Case labels are only allowed within a
switch statement.

User Response: Remove the case label, or place it
within a switch statement group. Check for misplaced
braces on the previous switch statement.

CCN3056 Break statement cannot be placed
outside a while, do, for, or switch
statement.

User Response: Remove the break statement or
place it inside a while, do, for or switch statement.
Check for misplaced braces on a previous statement.

CCN3057 Continue cannot be placed outside a
while, do, or for statement.

Explanation: Continue is only valid as, or within, a
loop body.

User Response: Remove the continue statement or
place it inside a while, do or for loop. Check for
misplaced braces on a previous loop.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 61

CCN3058 Label &1 has already been defined on
line &2 of ″&3″.

Explanation: You already used the label to identify a
section of code in the file indicated. You cannot redefine
a label.

User Response: Change the name of one of the
labels.

CCN3059 Comment that started on line &1 must
end before the end of file.

Explanation: A comment that was not terminated has
been detected. The comment started on the line
indicated.

User Response: End the comment before the file
ends.

CCN3062 Escape sequence &1 is out of the
range 0-&2. Value is truncated.

Explanation: Character constants specified in an
escape sequence exceeded the decimal value of 255,
or the octal equivalent of 377, or the hexadecimal
equivalent of FF.

User Response: Change the escape sequence so
that the value does not exceed the maximum value.

CCN3067 A struct or union can only be assigned
to a compatible type.

Explanation: The assignment is invalid between the
given aggregate types.

User Response: Change the operands so that they
have the same type.

CCN3068 Operation between types ″&1″ and ″&2″
is not allowed.

Explanation: The operation specified is not valid
between the operands having the given types.

User Response: Either change the operator or the
operands.

CCN3070 Register is the only storage class that
can be used with parameters.

User Response: Remove the storage class specified
in the parameter declaration or use the register storage
class.

CCN3073 Empty character constant.

Explanation: An empty character constant is not valid.
There must be at least one character between the
single quotation marks.

User Response: Put at least one character inside the

pair of single quotation marks.

CCN3076 Character constant &1 has more than
one character. No more than rightmost
4 characters are used.

Explanation: A character constant can only have up to
four bytes.

User Response: Change the character constant to
contain four bytes or less.

CCN3077 The wchar_t value &1 is not valid.

Explanation: The value is not a valid wchar_t value.
See the C/C++ Language Reference for information on
wide characters.

User Response: Change character to a valid wchar_t.
See the C/C++ Language Reference for information
about the wchar_t type.

CCN3078 #&1 directive has no effect.

Explanation: A preprocessor directive has been
specified that has no effect.

User Response: Remove the preproccessor directive.

CCN3085 Predefined macro &1 cannot be
undefined.

Explanation: The macro is predefined. You cannot
undefine predefined macros.

User Response: Remove the statement that
undefines the macro.

CCN3095 Unexpected parameter &1.

Explanation: A parameter was declared in the
parameter declaration list of the K&R function definition.
The parameter did not appear in the parameter identifier
list. It is also possible that the K&R function definition
had more parameters than the function prototype.

User Response: Change the number of parameters.

CCN3098 Missing argument(s).

Explanation: The function call contains fewer
arguments than specified in the parameter list of the
function prototype.

User Response: Make sure the function call has the
same number of arguments as the function prototype
has parameters.

62 z/OS V1R2.0 C/C++ Messages

CCN3099 Unexpected argument.

Explanation: The function call contains more
arguments than specified in the parameter list of the
function prototype.

User Response: Change the number of arguments in
the function call or change the function prototype.

CCN3103 Tag &1 requires a complete definition
before it is used.

Explanation: Only pointer declarations can include
incomplete types. A struct or union tag is undefined if
the list describing the name and type of its members
has not been specified.

User Response: Define the tag before it is used in the
declaration of an identifier or complete the declaration.

CCN3104 The value of an enumeration constant
must be an integral constant
expression.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the initial value of the
constant must be an integral expression that has a
value representable as an int.

User Response: Remove the initial value, or ensure
that the initial value is an integral constant expression
with a value representable as an int.

CCN3108 Bit fields with zero width must be
unnamed bit fields.

Explanation: A named bit field must have a positive
length; a zero length bit field is used for alignment only
and must not be named.

User Response: Redefine the bit field with a length
greater than zero or remove the name of the bit-field.

CCN3112 Duplicate type qualifier ″&1″ ignored.

Explanation: The indicated qualifier appears more
than once in the type declaration.

User Response: Remove one of the duplicate
qualifiers.

CCN3115 Duplicate type specifier ″&1″ ignored.

Explanation: A duplicate type specifier appears in the
type declaration.

User Response: Remove one of the duplicate type
specifiers.

CCN3117 Operand must be a scalar type.

Explanation: Valid scalar types include: signed and
unsigned char; signed and unsigned short, long, and int;
enum, float, double, long double, and pointers.

User Response: Change the type of the operand, or
use a different operator.

CCN3119 Duplicate storage class specifier &1
ignored.

Explanation: A duplicate storage class specifier
appears in the declaration.

User Response: Remove one of the duplicate storage
class specifiers.

CCN3120 Function cannot return a &1 qualified
type.

Explanation: The const or volatile qualifier cannot be
used to qualify a function’s return type.

User Response: Remove the qualifier or return a
pointer to the qualified type.

CCN3122 Expecting pointer to struct or union.

Explanation: The left hand operand of the arrow
operator (->) must have type pointer to structure or
pointer to union.

User Response: Change the operand.

CCN3127 The second and third operands of the
conditional operator must have
compatible struct or union types.

Explanation: If one operand in the conditional
expression has type struct or union, the other operand
must also have type struct or union.

User Response: Make the operands compatible.

CCN3131 Explicit dimension specification or
initializer required for an auto or static
array.

Explanation: For arrays of automatic or static storage
class, all dimensions of the array must be specified in
the declaration. If the declaration provides an
initialization, the first dimensions may be unspecified
because the initialization will determine the size needed.

User Response: Specify all of the dimensions in the
array declaration.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 63

CCN3134 Array bound is too large.

Explanation: The size of the array is too large for the
compiler to represent internally.

User Response: Reduce the size of the array.

CCN3137 Declaration must declare at least one
declarator, tag, or the members of an
enumeration.

Explanation: The declaration specifier was the only
component of the declaration. eg. int ;

User Response: Specify at least one declarator, tag,
or member of an enumeration.

CCN3152 A register array may only be used as
the operand to sizeof.

Explanation: The only operator that can be applied to
an array declared with storage class specifier register is
sizeof.

User Response: Remove the operation or remove the
register storage class specifier.

CCN3155 Option &1 requires suboption(s).

Explanation: The option is not completely specified; a
suboption is required.

User Response: Add a suboption.

CCN3159 Bit-field type specified for &1 is not
valid. Type &2 assumed.

Explanation: The type of a bit-field must be a
(possibly qualified) version of int, signed int or unsigned
int.

User Response: Define the bit-field with a type signed
int or unsigned int.

CCN3160 Object &1 cannot be declared as type
void.

Explanation: The type void can only be used as the
return type or parameter list of a function, or with a
pointer. No other object can be of type void.

User Response: Ensure that the declaration uses type
void correctly.

CCN3162 No definition was found for function
&1. Storage class changed to extern.

Explanation: A static function was declared and
referenced in this file. The definition of the function was
not found before the end of the file. When a function is
declared to be static, the function definition must appear
in the same file.

User Response: Change the storage class to extern

or provide a function definition in this file.

CCN3164 Expression must be a scalar type.

Explanation: Valid scalar types include: signed and
unsigned char; signed and unsigned short, long, and int;
enum, float, double, long double, and pointers.

User Response: Change the expression.

CCN3166 Definition of function &1 requires
parentheses.

Explanation: The syntax of the declaration is not
correct. The compiler assumes it is the declaration of a
function in which the parentheses surrounding the
parameters are missing.

User Response: Check the syntax of the declaration.
Ensure the object name and type are properly specified.
Check for incorrect spelling or missing parentheses.

CCN3167 String literal is longer than target array.
Literal is truncated on the right.

Explanation: An attempt was made to initialize an
array with a string that is too long. The largest possible
prefix of the string has been placed in the array.

User Response: Increase the size of the array. Make
sure you include space for the terminating null
character.

CCN3168 Initializer must be enclosed in braces.

Explanation: The initializer list for a declarator must
be enclosed in braces.

User Response: Check for misplaced or missing
braces.

CCN3169 Too many suboptions specified for
option FLAG. Specify only two
suboptions.

Explanation: The FLAG option takes two suboptions
separated by ’:’. The suboptions indicate the level of
errors to be reported in the source listing and in stderr.

User Response: Only specify two suboptions to the
FLAG option.

CCN3170 Parameter &1 has already been defined
on line &2 of ″&3″.

Explanation: A parameter can only be defined once
but more than one definition for the parameter has been
specified. Parameters names must be unique.

User Response: Remove one of the parameter
declarations or change the name of the identifier.

64 z/OS V1R2.0 C/C++ Messages

CCN3172 Parameter type list for function &1
contains parameters without
identifiers.

Explanation: In a C function definition, all parameters
must be named in the parameter list. The only
exceptions are parameters of type void.

User Response: Name the parameter or remove it.

CCN3173 Option &1 is not recognized.

Explanation: An invalid option was specified.

User Response: Correct the spelling of the option.

CCN3174 Option &1 must be specified on the
command line.

Explanation: The option can only be specified on the
command line and is not valid as part of an options
pragma.

User Response: Specify option on command line.

CCN3175 Option &1 must be specified on the
command line or before the first C
statement in the program.

Explanation: The option is specified in a pragma
options after the first C token in the compilation unit. It
must be specified before the first token.

User Response: Specify the option on the command
line or move the pragma options before the first token.

CCN3176 Option &1 cannot take more than one
suboption.

Explanation: More than one suboption was specified
for an option that can only accept one suboption.

User Response: Remove the extra suboptions.

CCN3177 Type combination is not valid.

CCN3178 Unexpected argument for built-in
function &1.

Explanation: The function call contains more
arguments than specified in the parameter list of the
built-in function.

User Response: Change the number of arguments in
the function call.

CCN3180 Redeclaration of built-in function &1
ignored.

Explanation: Built-in functions are declared by the
compiler and cannot be redeclared.

User Response: Remove the declaration.

CCN3181 Definition of built-in function &1
ignored.

Explanation: Built-in functions are defined by the
compiler and cannot be redefined.

User Response: Remove the function definition.

CCN3182 Arguments missing for built-in function
&1.

Explanation: The function call contains fewer
arguments than specified in the parameter list of the
built-in function.

User Response: Change the number of arguments in
the function call.

CCN3183 Builtin function &1 cannot change a
read-only string literal.

Explanation: Read-only strings cannot be modified.

User Response: Modify a copy of the string or change
the string’s read-only status.

CCN3184 Too few suboptions specified for
option FLAG. Specify two suboptions.

Explanation: The FLAG option takes two suboptions
separated by ’:’. The suboptions indicate the level of
errors to be reported in the source listing and in stderr.

User Response: Specify two suboptions to the FLAG
option.

CCN3185 #line number &1 must be greater than
zero.

Explanation: The #line directive tells the compiler to
treat the following source lines as starting from the
specified line. This number must be a non-negative
offset from the beginning of the file.

User Response: Change line number to a
non-negative integer.

CCN3186 String literal must be ended before the
end of line.

Explanation: String literals must end before the end of
the line. To create a string literal longer than one line,
use the line continuation sequence (a backslash (\) at
the end of the line), or concatenate adjacent string
literal.

User Response: End the string with a quotation mark
before the end of the line or use the continuation
sequence.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 65

CCN3188 Reserved name &1 cannot be defined
as a macro name.

Explanation: The name is reserved for the compiler’s
use.

User Response: Choose another name.

CCN3189 Floating point constant &1 is not valid.

Explanation: See the C/C++ Language Reference for
a description of a floating-point constant.

User Response: Ensure that the floating-point
constant does not contain any characters that are not
valid.

CCN3190 Automatic constant &1 does not have
a value. Zero is being assumed.

Explanation: Const qualified variable declarations
should contain an initializer. Otherwise you cannot
assign the variable a value.

User Response: Initialize the const variable when you
declare it.

CCN3191 The character &1 is not a valid C
source character.

Explanation: Refer to the C/C++ Language Reference
for information on valid characters.

User Response: Change the character.

CCN3192 Cannot take address of built-in
function &1.

Explanation: You cannot take the address of a built-in
function or declare a pointer to a built-in function.

User Response: Remove the operation that takes the
address of the built-in function.

CCN3193 The size of this type is zero.

Explanation: You cannot take the address of an array
of size zero.

User Response: Remove the operation that takes the
address of the zero-sized array.

CCN3194 Incomplete type is not allowed.

Explanation: Except for pointers, you cannot declare
an object of incomplete type.

User Response: Complete the type declaration.

CCN3195 Integral constant expression with a
value greater than zero is required.

Explanation: The size of an array must be an
expression that evaluates to a compile-time integer
constant that is larger than zero.

User Response: Change the expression.

CCN3196 Initialization between types ″&1″ and
″&2″ is not allowed.

Explanation: An attempt was made to initialize a
variable with an incompatible type.

User Response: Ensure types are compatible.

CCN3197 Expecting header file name in #include
directive.

Explanation: There was no header filename after the
#include directive.

User Response: Specify the header file name.
Enclose system header names in angle brackets and
user header names in double quotes.

CCN3198 #if, #else, #elif, #ifdef, #ifndef block
must be ended with #endif.

Explanation: Every #if, #ifdef, and #ifndef must have
a corresponding #endif.

User Response: End the conditional preprocessor
statements with a #endif.

CCN3199 #&1 directive requires a macro name.

Explanation: There must be a macro name after
every #define, #undef, #ifdef or #ifndef.

User Response: Ensure that a macro name follows
the #define, #undef, #ifdef, or #ifndef preprocessor
directive.

CCN3200 #elif can only appear within a #if, #elif,
#ifdef, or #ifndef block.

Explanation: #elif is only valid within a conditional
preprocessor block.

User Response: Remove the #elif statement, or place
it within a conditional preprocessor block.

CCN3201 #else can only appear within a #if,
#elif, #ifdef or #ifndef block.

Explanation: #else is only valid within a conditional
preprocessor block.

User Response: Remove the #else statement, or
place it within a conditional preprocessor block.

66 z/OS V1R2.0 C/C++ Messages

CCN3202 #endif can only appear at the end of a
#if, #elif, #ifdef or #ifndef block.

Explanation: Every #endif must have a corresponding
#if, #ifdef, or #ifndef.

User Response: Remove the #endif statement, or
place it after a conditional preprocessor block.

CCN3204 Unexpected end of file.

Explanation: The end of the source file has been
encountered prematurely.

User Response: Check for misplaced braces.

CCN3205 &1

Explanation: The #error directive was encountered.
Compilation terminated.

User Response: Recompile with correct macro
definitions.

CCN3206 Suffix of integer constant &1 is not
valid.

Explanation: Valid integer suffixes are u or U for
unsigned, or l or L for long. Unsuffixed constants are
given the smallest data type that can hold the value.
Refer to the C/C++ Language Reference.

User Response: Change or remove the suffix.

CCN3207 Integer constant &1 out of range.

Explanation: The specified constant is too large to be
represented by an unsigned long int.

User Response: The constant integer must have a
value less than UINT_MAX defined in <limits.h>.

CCN3208 Compilation ended due to an I/O error.

Explanation: A file read or write error occurred.

User Response: Ensure that you have read access to
all source files, and read and write access to the TMP
directory. You also need write access to the object
output directory.

CCN3209 Character constants must end before
the end of a line.

Explanation: Character literals must be terminated
before the end of the line.

User Response: End the character literal before the
end of the line. Check for misplaced quotation marks.

CCN3210 The ## operator requires two
operands.

Explanation: The ## operator must be preceded and
followed by valid tokens in the macro replacement list.
Refer to the C/C++ Language Reference for information
on the ## operator.

User Response: Provide both operands for the ##
operator.

CCN3211 Parameter list must be empty, or
consist of one or more identifiers
separated by commas.

Explanation: The macro parameter list must be
empty, contain a single identifier, or contain a list of
identifiers separated by commas.

User Response: Correct the parameter list.

CCN3212 Duplicate parameter &2 in definition of
macro &1.

Explanation: The identifiers in the macro parameter
list must be unique.

User Response: Change the identifier name in the
parameter list.

CCN3213 Macro name &1 cannot be redefined.

Explanation: You can define a macro multiple times
only if the definitions are identical except for white
space separating the tokens.

User Response: Change the macro definition to be
identical to the preceding one, or remove it.

CCN3215 Too many arguments specified for
macro &1.

Explanation: The number of arguments specified in
the macro invocation is different from the number of
parameters specified in the macro definition.

User Response: Make the number of arguments
consistent with the macro definition.

CCN3218 Unknown preprocessing directive #&1.

Explanation: An unrecognized preprocessing directive
has been encountered.

User Response: Check the spelling and syntax or
remove the directive.

CCN3219 #line value &1 too large.

Explanation: The value for a #line directive must not
exceed 32767.

User Response: Ensure that the #line value does not
exceed 32767.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 67

CCN3220 #line value &1 must contain only
decimal digits.

Explanation: A non-numeric character was
encountered in the #line value.

User Response: Check the syntax of the value given.

CCN3221 Initializer must be a valid constant
expression.

Explanation: The initializers for objects of static
storage duration, for elements of an array, or for
members of a structure or union must be valid constant
expressions.

User Response: Remove the initialization or change
the indicated initializer to a valid constant expression.

CCN3224 Incorrect #pragma ignored.

Explanation: An unrecognized #pragma directive was
encountered. See the C/C++ Language Reference for
the list of valid #pragma directives.

User Response: Change or remove the #pragma
directive.

CCN3225 Error reading file &1. (&2)

User Response: Ensure that the file exists and that
the compiler can access it.

CCN3226 The ″:″ operator is not allowed
between ″&1″ and ″&2″.

Explanation: The operands must be of compatible
type.

User Response: Change the type of the operands.

CCN3229 File is empty.

Explanation: The source file contains no code.

User Response: Check that the file name and path
are correct. Add source code to the file.

CCN3231 Error occurred while opening
preprocessor output file.

Explanation: The preprocessor was unsuccessful in
attempting to open the output file.

User Response: Ensure you have write access to the
file.

CCN3232 Divisor for modulus or division
operator cannot be zero.

Explanation: The value of the divisor expression
cannot be zero.

User Response: Change the expression used as the
divisor.

CCN3234 Expecting a new-line character on #&1
directive.

Explanation: A character sequence was encountered
when the preprocessor required a new-line character.

User Response: Add a new-line character.

CCN3235 Incorrect escape sequence &1. \
ignored.

Explanation: An escape sequence that is not valid
has been encountered in a string literal or a character
literal. It is replaced by the character following the
backslash (\).

User Response: Change or remove the escape
sequence.

CCN3236 Macro name &1 has been redefined.

Explanation: You can define a macro multiple times in
extended mode. In ANSI mode macro redefinitions are
ignored.

User Response: Change the language level to
extended (with the /Se compiler option or #pragma
langlvl directive), or remove the macro redefinitions.

CCN3238 Function argument cannot be type
void.

Explanation: The void type cannot appear in the
argument list of a function call. The void type can
appear in a parameter list only if it is a non-variable
argument function. It is the only parameter in the list,
and it is unnamed.

User Response: Correct the argument or remove the
argument.

CCN3242 An object with external linkage
declared at block scope cannot be
initialized.

Explanation: You cannot declare a variable at block
scope with the storage class extern and give it an
explicit initializer.

User Response: Initialize the external object in the
external declaration.

CCN3243 Value of enumeration constant must be
in range of signed integer.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the initial value must be an
integral expression that has a value representable as an
int.

68 z/OS V1R2.0 C/C++ Messages

User Response: Remove the initial value, or ensure
that it is an integral constant expression that has a
value representable as an int.

CCN3244 External variable &1 cannot be
redefined.

Explanation: An attempt was made to redefine an
external variable.

User Response: Remove the redefinition.

CCN3245 Incompatible sign adjective ″&1″.

Explanation: Adjectives ″signed″ and unsigned can
only modify integer type specifiers.

User Response: Either remove the sign adjective or
use a different type specifier.

CCN3246 Incompatible length adjective ″&1″.

Explanation: Length adjectives short and long can
only be applied to particular scalar types. See the
C/C++ Language Reference for valid types.

User Response: Either remove the length adjective or
use a different type specifier.

CCN3247 Incompatible type specifier ″&1″.

Explanation: The type specifier is not compatible with
the type adjectives used. See the C/C++ Language
Reference for valid combinations of type specifiers and
adjectives.

User Response: Either remove the adjective or use a
different type specifier.

CCN3248 More than one storage class specifier
&1.

Explanation: A C declaration must only have one
storage class specifier.

User Response: Ensure only one storage class is
specified.

CCN3249 Identifier contains a $ character.

Explanation: You cannot use the $ character in an
identifier. An identifier can contain alphanumeric
characters and underscores. An identifier must start with
either an underscore or alphabetic character.

User Response: Remove the $ character.

CCN3250 Floating point constant &1 out of
range.

Explanation: The compiler detected a floating-point
overflow either in scanning a floating-point constant, or
in performing constant arithmetic folding.

User Response: Change the floating-point constant
so that it does not exceed the maximum value.

CCN3251 Static function &1 is undefined.

Explanation: A static function was declared and
referenced in this file. The definition of the function was
not found before the end of the file. When a function is
declared to be static, the function definition must appear
in the same file.

User Response: Define the function in the file or
remove the static storage class.

CCN3255 #pragma &1 is out of sequence.

Explanation: The #pragma directive was out of
sequence. See the C language Reference Manual for
the restrictions on placement.

User Response: Change or remove the #pragma
directive.

CCN3258 Hexadecimal integer constant &1 is not
valid.

Explanation: An invalid hexadecimal integer constant
was specified. See the C/C++ Language Reference for
details on specifying hexadecimal characters.

User Response: Change the value to a valid
hexadecimal integer constant.

CCN3260 Octal integer constant &1 is not valid.

Explanation: An invalid octal integer constant was
specified. See the C/C++ Language Reference for
details on specifying octal characters.

User Response: Change the value to a valid octal
integer constant.

CCN3261 Suboption &1 is not valid for option
&2.

Explanation: An invalid suboption was specified for
some option.

User Response: Change the suboption.

CCN3262 #pragma &1 must occur before first C
statement in program. #pragma
ignored.

Explanation: This pragma must be specified before
the first C token in the input (including header files).

User Response: Place the #pragma directive in the
file before any C code, or remove it.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 69

CCN3263 #pragma strings directive can be
specified only once per source file.
#pragma ignored.

Explanation: This #pragma specifies whether string
literals are placed in read-only memory. It must appear
only once and before any C code.

User Response: Change the location of the directive
and ensure that it appears only once in the translation
unit.

CCN3264 #pragma comment(copyright) directive
can be specified only once per source
file.

Explanation: There can only be one #pragma
comment(copyright) per source file.

User Response: Ensure that it occurs only once in the
translation unit.

CCN3266 Parameter(s) for #pragma are out of
range.

Explanation: The #pragma parameters were invalid.
See the C/C++ Language Reference for details on valid
#pragma parameters.

User Response: Change the parameter.

CCN3267 Unrecognized #pragma ignored.

Explanation: An invalid pragma was encountered and
ignored.

User Response: Ensure that the #pragma name is
spelled correctly. A #pragma with equivalent function,
but a different name may exist. See the C/C++
Language Reference for a list of #pragma directives.

CCN3268 Macro &1 invoked with an incomplete
argument for parameter &2.

Explanation: The parameter for the macro invocation
must have a complete argument.

User Response: Complete the specification of the
macro argument list. Check for missing commas.

CCN3269 A char array pointer cannot be assigned
to a nonchar pointer.

CCN3270 A wide char array pointer cannot be
assigned to a nonwide char pointer.

CCN3271 The indirection operator cannot be
applied to a void pointer.

Explanation: The indirection operator requires a
pointer to a complete type. A void pointer is an
incomplete type that can never be completed.

User Response: Cast the pointer to a type other than
void before this operation.

CCN3272 Identifier not allowed in cast or sizeof
declarations.

Explanation: Only abstract declarators can appear in
cast or sizeof expressions.

User Response: Remove the identifier from the cast
or sizeof expression and replace it with an abstract
declarator.

CCN3273 Missing type in declaration of &1.

Explanation: A declaration was made without a type
specifier.

User Response: Insert a type specifier into the
declaration.

CCN3274 Missing declarator in structure member
declaration.

Explanation: A struct or union member declaration
must specify a name. A type cannot be followed by a
semicolon.

User Response: Declare the member with a name.

CCN3275 Unexpected text &1 encountered.

Explanation: A syntax error has occurred. This
message lists the tokens that were discarded by the
parser when it tried to recover from the syntax error.

User Response: Correct the syntax error and compile
again.

CCN3276 Syntax error: possible missing &1?

Explanation: A syntax error has occurred. This
message lists the token that the parser expected and
did not find.

User Response: Correct the syntax error and compile
again.

CCN3277 Syntax error: possible missing &1 or
&2?

Explanation: A syntax error has occurred. This
message lists the tokens that the parser expected and
did not find.

User Response: Correct the syntax error and compile
again.

70 z/OS V1R2.0 C/C++ Messages

CCN3278 The structure definition must specify a
member list.

Explanation: The declaration of a struct or a union
that includes an empty member list enclosed between
braces is not a valid struct or union definition.

User Response: Specify the members of the struct or
union in the definition or remove the empty braces to
make it a simple struct or union tag declaration.

CCN3279 A function declarator cannot have a
parameter identifier list if it is not a
function definition.

Explanation: A function declarator that is not also a
function definition may not have a K&R style parameter
identifier list. An example is the ″x,y″ in ″int (*fred(a,b))
(x,y) {}″.

User Response: Remove the parameter identifier list.

CCN3280 Function argument assignment
between types ″&1″ and ″&2″ is not
allowed.

Explanation: The type of the argument in the function
call should match the corresponding parameter type in
the function declaration.

User Response: Cast the argument to a different
type, change the type or change the function prototype.

CCN3281 Prefix and postfix increment and
decrement operators cannot be applied
to ″&1″.

Explanation: Increment and decrement operators
cannot operate on pointers to function or pointers to
void.

User Response: Change the pointer to point to an
object type.

CCN3282 The type of the parameters must be
specified in a prototype.

Explanation: A prototype specifies the number and
the type of the parameters that a function requires. A
prototype that does not specify the type of the
parameters is not correct, for example,

fred(a,b);

User Response: Specify the type of the parameters in
the function prototype.

CCN3283 Functions cannot be declared &1 at
block scope, &2 is ignored.

Explanation: Functions declared at block scope can
only have extern as an explicit storage class specifier
and cannot be inline.

User Response: Place the declaration of the function
at file scope, or remove the storage class specifier or
the inline specifier.

CCN3285 The indirection operator cannot be
applied to a pointer to an incomplete
struct or union.

Explanation: A structure or union type is completed
when the definition of its tag is specified. A struct or
union tag is defined when the list describing the name
and type of its members is specified.

User Response: Complete the struct or union
definition.

CCN3286 A struct or union with no named
members cannot be explicitly
initialized.

Explanation: Only aggregates containing named
members can be explicitly initialized.

User Response: Name the members of the struct or
union.

CCN3287 The parameter list on the definition of
macro &1 is not complete.

Explanation: There is a problem with the parameter
list in the definition of the macro.

User Response: Complete the parameter list. Look for
misplaced or extra commas.

CCN3288 Expecting file name or new-line
character on #line directive.

Explanation: The #line directive requires a line
number argument as its first parameter and a file name
as an optional second parameter. No other arguments
are allowed. A new-line character must be present after
the argument list.

User Response: Change the directive syntax.

CCN3289 Macro &1 redefined with identical
definition.

Explanation: Identical macro redefinitions are allowed
but not necessary. The amount of white space
separating the tokens have no bearing on whether
macros are considered identical.

CCN3290 Unknown macro name &1 on #undef
directive.

Explanation: An attempt is being made to undefine a
macro that has not been previously defined.

User Response: Check the spelling of the macro
name or remove the #undef directive.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 71

CCN3291 Expecting decimal constant on #line
directive.

Explanation: The value for a #line directive must be a
decimal constant.

User Response: Specify a line number on the #line
directive.

CCN3292 Multibyte character literal not allowed
on #&1 directive.

Explanation: The directive does not allow a multibyte
character literal.

User Response: Remove the multibyte character
literal.

CCN3293 Identifier &1 assigned default value of
zero on &2 directive.

Explanation: The indicated identifier in a #if or #elif
expression was assigned the default value of zero. The
identifier may have been intended to be expanded as a
macro.

User Response: Add a #define for the macro before
using it in a preprocessor conditional.

CCN3294 Syntax error in expression on #&1
directive.

Explanation: The expression for a preprocessor
directive contains a syntax error.

User Response: Replace the expression that controls
the directive by a constant integral expression.

CCN3295 File ended with a continuation
sequence.

Explanation: The file ended unexpectedly with a
backslash character followed by a new-line character.

User Response: Remove the continuation character
from the last line of the file, or add code after the
continuation character.

CCN3296 #include file &1 not found.

Explanation: The file specified on the #include
directive could not be found. See the C/C++ Language
Reference for file search order.

User Response: Ensure the #include file name and
the search path are correct.

CCN3297 Unable to open input file &1. (&2)

Explanation: The compiler was unable to open the
input file.

User Response: Ensure file exists and is accessible
by compiler.

CCN3298 Unable to read input file &1. (&2)

Explanation: The compiler was unable to read the
input file.

User Response: Ensure file exists and is accessible
by compiler.

CCN3299 Maximum #include nesting depth of &1
has been exceeded.

Explanation: The included files have been nested too
deeply.

User Response: Reduce the number of nested
include files.

CCN3300 Insufficient storage available.

Explanation: The compiler ran out of memory trying to
compile the file. This sometimes happens with large
files or programs with large functions. Note that very
large programs limit the amount of optimization that can
be done.

User Response: Increase your region size on MVS, or
your virtual storage on VM. You can also divide the file
into several small sections or shorten the function.

CCN3301 Redeclaration cannot specify fewer
parameters than previous declaration.

Explanation: The function definition has fewer
parameters than the prototype.

User Response: Modify one of the function
declarations so that the number and types of the
parameters match.

CCN3302 The declarations of the function &1
must be consistent in their use of the
ellipsis.

Explanation: The prototyped redeclaration of the
function is not correct. Fewer parameters appear before
the ellipsis in this function redeclaration than the
previous declaration.

User Response: Ensure that the redeclaration is
consistent with the previous declaration.

CCN3303 The type of the parameter &1 cannot
conflict with the previous declaration
of function &2.

Explanation: Nonprototype function declarations,
popularly known as K&R prototypes, specify only the
function return type. The function parentheses are
empty; no information about the parameters is given.

Nonprototype function definitions specify a list of
parameter names appearing between the function
parentheses followed by a list of declarations (located

72 z/OS V1R2.0 C/C++ Messages

between the parentheses and the opening left brace of
the function) that indicates the type of the parameters. A
nonprototype function definition is also known as a K&R
function definition.

A prototype function declaration or definition specifies
the type and the number of the parameters in the
parameter declaration list that appears inside the
function parenthesis. A prototype function declaration is
better known as an ANSI prototype, and a prototype
function definition is better known as an ANSI function
definition.

When the nonprototype function declarations/definitions
are mixed with prototype declarations, the type of each
prototype parameter must be compatible with the type
that results from the application of the default argument
promotions.

Most types are already compatible with their default
argument promotions. The only ones that aren’t are
char, short, and float. Their promoted versions are,
respectively, int, int, and double.

This message can occur in several situations. The most
common is when mixing ANSI prototypes with K&R
function definitions. If a function is defined using a
K&R-style header, then its prototype, if present, must
specify widened versions of the parameter types. Here
is an example.

int fn(short); int fn(x)
short x; {}

This is not valid because the function has a K&R-style
definition and the prototype does not specify the
widened version of the parameter. To be correct, the
prototype should be

int fn(int);

because int is the widened version of short.

Another possible solution is to change the function
definition to use ANSI syntax. This particular example
would be changed to

int fn(short); int fn(short x) {}

This second solution is preferable, but either solution is
equally valid.

User Response: Give a promoted type to the
parameter in the prototype function declaration.

CCN3304 No function prototype given for ’&1’.

Explanation: A prototype declaration of the function
specifying the number and type of the parameters was
not found before the function was used. Errors may
occur if the function call does not respect the function
definition.

User Response: Add an appropriate function
prototype before calling the function.

CCN3306 Subscript operator requires an array
operand in the offsetof macro.

Explanation: A subscript was specified in the offsetof
macro but the operand is not an array.

User Response: Either change the operand to be an
array type or remove the subscript operator.

CCN3307 Array index must be a constant
expression in the offsetof macro.

Explanation: The offsetof macro is evaluated at
compile time. Thus all arguments must be constant
expressions.

User Response: Change the expression.

CCN3308 Operand of the offsetof macro must be
a struct or a union.

Explanation: The first operand of the offsetof macro
must be a structure or union type.

User Response: Change the operand.

CCN3309 The offsetof macro cannot be used
with an incomplete struct or union.

Explanation: An incomplete struct or union is not a
valid argument to the offsetof macro. A structure or
union type is completed when the definition of its tag is
specified.

User Response: Ensure the struct or union is a
complete type.

CCN3310 The type ″&1 &2″ was introduced in a
parameter list, and will go out of scope
at the end of the function declaration
or definition.

Explanation: The tag will be added to parameter
scope in ANSI mode. Thus it will go out of scope at the
end of the declaration or function definition. In extended
mode, the tag is added to the closest enclosing block
scope.

User Response: If the tag is needed for declarations
outside its scope, move the tag declaration outside of
parameter scope.

CCN3311 Wide character constant &1 has more
than one character. Last character is
used.

Explanation: All but the last character in the constant
will be discarded.

User Response: Remove all but one character or
change the character constant into a string literal.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 73

CCN3312 Compiler internal name &1 has been
defined as a macro.

Explanation: Do not redefine internal compiler names.

User Response: Remove the macro definition or
change the name of the macro being defined.

CCN3313 Compiler internal name &1 has been
undefined as a macro.

Explanation: Do not redefine internal compiler names.

User Response: Remove the macro undefinition.

CCN3314 The tag of this expression’s type has
gone out of scope.

Explanation: The tag used in the type declaration of
the object has gone out of scope, however the object is
still referenced in the expression.

User Response: Either remove the reference to the
object or move the tag’s definition to a scope that
encloses both the referenced object and the object’s
declaration.

CCN3320 Operation is not allowed because the
size of &1 is unknown.

Explanation: The operand must be a complete type
for the compiler to determine its size.

User Response: Provide a complete type definition.

CCN3321 You can specify an initializer only for
the first named member of a union.

Explanation: There can only be an initializer for the
first named member of a union.

User Response: Remove all union initializers other
than the one attached to the first named member.

CCN3322 Illegal multibyte character &1.

Explanation: The multibyte character specified is not
valid.

User Response: Correct the multibyte character.

CCN3323 ″double″ should be used instead of
″long float″.

Explanation: The type long float is not valid; it is
treated as a double.

User Response: Remove the long type specifier or
use double instead of float.

CCN3324 ″&1″ cannot be converted to ″&2″.

Explanation: The cast between the two types is not
allowed.

User Response: Remove the cast.

CCN3327 An error occurred while opening the
listing file, &1.

Explanation: The compiler was unable to open the
listing file.

User Response: Ensure the file exists and that the
compiler can access it.

CCN3328 ″″&1″ is not a valid hex digit.″

Explanation: Valid hex digits are the letters
A,B,C,D,E,F,0,1,2,3,4,5,6,7,8,9.

User Response: Change the digit.

CCN3329 Byte string must have an even length.

Explanation: The byte string for a #pragma mcfunc
must be of even length.

User Response: Ensure that the machine code string
is of even length.

CCN3332 Option &1 is ignored because option
&2 is not specified.

Explanation: The option &1 is only valid when used in
conjunction with &2.

User Response: Compile with &2.

CCN3334 Identifier &1 has already been defined
on line &2 of ″&3″.

Explanation: There is more than one definition of an
identifier.

User Response: Remove one of the definitions or
change the name of the identifier.

CCN3335 Parameter identifier list contains
multiple occurrences of &1.

Explanation: Identifier names in a parameter list must
be unique.

User Response: Change the name of the identifier or
remove the parameter.

CCN3339 A character string literal cannot be
concatenated with a wide string literal.

Explanation: A string that has a prefix L cannot be
concatenated with a string that is not prefixed.
Concatenation requires that both strings be of the same
type.

74 z/OS V1R2.0 C/C++ Messages

User Response: Check the syntax of the value given.

CCN3341 #include header must be ended before
the end of the line.

Explanation: A #include directive was specified across
two or more lines.

User Response: Ensure that the #include directive
and its arguments are contained on a single line.

CCN3342 ″″/*″ detected in comment.″

Explanation: You can ignore this message if you
intended ″/*″ to be part of the comment. If you intended
it to start a new comment, move it out of the enclosing
comment.

User Response: Remove ″/*″ or ensure that ″/*″ was
intended in the comment.

CCN3343 Redeclaration of &1 differs from
previous declaration on line &2 of
″&3″.

Explanation: The redeclaration is not compatible with
the previous declaration.

User Response: Either remove one declaration or
make the types compatible.

CCN3344 Member &1 has already been defined
on line &2 of ″&3″.

Explanation: Member names must be unique within
the same aggregate.

User Response: Change the name.

CCN3345 The data in precompiled header file &1
does not have the correct format.

Explanation: The precompiled header file may have
become corrupt and is ignored.

User Response: Regenerate the precompiled header
files.

CCN3346 Unable to open precompiled header file
&1 for input. The original header will
be used.

Explanation: The compiler was unable to open the
precompiled header file for reading and will use the
original header.

User Response: Regenerate the precompiled header
files.

CCN3347 Precompiled header file &1 was
created by a more recent release of the
compiler. The original header will be
used.

Explanation: The compiler cannot understand the
format of the precompiled header, since it was
generated using a more recent version of the compiler.
The original text version of the header will be used.

User Response: Regenerate the precompiled header
files.

CCN3348 Unable to write to precompiled header
file &1.

Explanation: The compiler was unable to write to the
precompiled header files.

User Response: Ensure that the compiler has write
access to the precompiled header files.

CCN3349 Value of enumeration constant must be
in range of unsigned integer.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the value that it is initialized
to must be an integral expression that has a value
representable as an int.

User Response: Remove the initial value, or ensure
that it is an integral constant expression that has a
value representable as an int.

CCN3350 Error writing to intermediate files. &1.

Explanation: An error occurred during compilation.
Ensure the compiler has write access to the work files
and that there is enough space free.

User Response: Recompile compilation unit.

CCN3351 Error opening intermediate files.

Explanation: An error occurred during compilation.
Ensure the compiler has write access to the work files
and that there is enough space free.

User Response: Recompile compilation unit.

CCN3352 Incompatible specifications for options
arch and tune.

Explanation: The values specified for tune option
cannot be smaller than that of arch.

User Response: Change option values.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 75

CCN3356 Compilation unit is empty.

Explanation: There is no code in the compilation unit.

User Response: Ensure the correct source file is
specified. Recompile.

CCN3357 Unable to generate prototype for ″&1″
because one or more enum, struct, or
union specifiers did not have a tag.

Explanation: A prototype could not be generated for
the function because the enum, struct or union
declaration did not have a tag.

User Response: Specify a tag.

CCN3358 ″&1″ is defined on line &2 of &3.

Explanation: This message indicates where a
previous definition is located.

User Response: Remove one of the definitions or
change the name of the identifier.

CCN3359 Automatic variable &1 contains a const
member and is not initialized. It will be
initialized to zero.

Explanation: An automatic variable that has a const
member is not initialized. The compiler is using zero as
the initializer.

User Response: Initialize the const member.

CCN3360 Same #pragma &1 has already been
specified for object ″&2″; this
specification is ignored.

Explanation: The repetition of the #pragma is
redundant and is ignored.

User Response: Remove the duplicate #pragma.

CCN3361 A different #pragma &1 has already
been specified for object ″&2″, this
specification is ignored.

Explanation: A previous #pragma for the object is
taking precedence over this #pragma.

User Response: Remove one of the #pragma
directives.

CCN3362 Identifier ″&1″ was referenced in
#pragma &2, but was never actually
declared.

Explanation: A #pragma refers to an identifier that has
not been declared.

User Response: Declare identifier or remove
#pragma.

CCN3363 Packing boundary must be specified
as one of 1, 2, 4, 8 or 16.

Explanation: Objects must be packed on 1, 2, 4, 8 or
16 byte boundaries.

User Response: Change the packing specifier.

CCN3364 main must have C calling convention.

Explanation: An inappropriate linkage has been
specified for the main function. This function is the
starting point of the program so only C linkage is
allowed.

User Response: Change the calling convention of
main.

CCN3366 Declaration cannot specify multiple
calling convention specifiers.

Explanation: A declaration can specify only one
calling convention. Valid calling conventions include:
OS, COBOL, PLI, FORTRAN

User Response: Remove extra calling convention
specifiers.

CCN3367 Only functions or typedefs of functions
can be given a calling convention.

Explanation: A calling convention protocol keyword
has been applied to an identifier that is not a function
type or a typedef to a function type.

User Response: Check that correct identifier is
specified or remove #pragma.

CCN3369 The function cannot be redeclared with
a different calling convention.

Explanation: The redeclaration of this function cannot
have a different calling convention than the previous
declaration. The function could have been given a
calling convention through a typedef, or via a previous
declaration.

User Response: Make sure all declarations of the
function specify the same calling convention.

CCN3374 Pointer types ″&1″ and ″&2″ are not
compatible.

Explanation: The types pointed to by the two pointers
are not compatible.

User Response: Change the types to be compatible.

76 z/OS V1R2.0 C/C++ Messages

CCN3376 Redeclaration of &1 has a different
number of fixed parameters than the
previous declaration.

Explanation: The number of fixed parameters in the
redeclaration of the function does not match the original
number of fixed parameters.

User Response: Change the declarations to have the
same number of parameters, or rename or remove one
of the declarations.

CCN3377 The type ″&1″ of parameter &2 differs
from the previous type ″&3″.

Explanation: The type of the corresponding parameter
in the previous function declaration is not compatible.

User Response: Change the parameter declaration or
rename the function declaration.

CCN3378 Prototype for function &1 cannot
contain ″...″ when mixed with a
nonprototype declaration.

Explanation: A function prototype and a nonprototype
declaration can not be compatible if one contains ″...″.

User Response: Convert nonprototype declaration to
a prototyped one or remove the ″...″.

CCN3379 Prototype for function &1 must contain
only promoted types if prototype and
nonprototype declarations are mixed.

Explanation: Nonprototype declarations have their
parameters automatically promoted. Integral widening
conversions are applied to integral types and float is
converted into double.

User Response: Promote the parameter types in the
prototyped declaration.

CCN3380 Parameter &1 has type ″&2″ which
promotes to ″&3″.

Explanation: Nonprototype declarations have their
parameters automatically promoted. Integral widening
conversions are applied to integral types and float is
converted into double.

User Response: Promote the parameter types in the
prototyped declaration.

CCN3381 The type ″&1″ of parameter &2 in the
prototype declaration is not compatible
with the corresponding parameter type
″&3″ in the nonprototype declaration.

Explanation: The types of the parameters must be
compatible.

User Response: Change the parameters so that they
are compatible.

CCN3382 The type ″&1″ of identifier &2 differs
from previous type ″&3″.

Explanation: The two types are not compatible.

User Response: Change the parameter types so that
they are compatible.

CCN3383 Expecting ″&1″ to be an external
identifier.

Explanation: The identifier must have external
linkage.

User Response: Change the storage class to extern.

CCN3384 Expecting ″&1″ to be a function name.

Explanation: ″&1″ should be a function symbol.

User Response: Specify a different name or change
the type of the symbol.

CCN3387 The enum cannot be packed to the
requested size. Change the
enumeration value or change the
#pragma enum().

Explanation: Enums may be 1, 2, or 4 bytes in size.

User Response: Change the enumeration value or
change the #pragma enum().

CCN3388 Value &1 specified in #pragma &2 is
out of range.

Explanation: Refer to the C/C++ Language Reference
for more information about the valid values for the
#pragmas.

User Response: Specify a different value.

CCN3389 Some program text not scanned due to
&1 option or #pragma &2.

Explanation: MARGINS or SEQUENCE option, or
#pragma margins or sequence was used to limit the
valid text region in a source file.

User Response: Remove the MARGINS or
SEQUENCE option, or remove the #pragma margins or
sequence, or specify a more inclusive text region.

CCN3390 The function or variable &1 cannot be
declared as an import in the same
compilation unit in which it is defined.

Explanation: An object or function has both a
definition and an import directive in this compilation unit.
This creates a conflict, since the function or object can

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 77

be defined either here or where it is exported from, but
not both.

User Response: Remove the #pragma import
directive or __import keyword or change the definition of
the object or function into an extern declaration.

CCN3393 &1 value must contain only decimal
digits.

Explanation: A non-numeric character was
encountered in the &1 value.

User Response: Check the syntax of the value given.

CCN3394 Ordinal value on #pragma &1 is out of
range.

Explanation: The specified ordinal number should be
between 0 and 65535, inclusive.

User Response: Change the value accordingly.

CCN3395 Variable &1 must be an external object
or a function name for use with
#pragma import.

Explanation: The identifier specified by the pragma is
not a function or external object.

User Response: Declare the object with storage class
″extern″.

CCN3396 Option &1 is incompatible with option
&2 and is ignored.

Explanation: The option is not compatible with
another option so it is ignored.

User Response: Remove one of the options.

CCN3397 Undefined function or variable &1
cannot have a #pragma export.

Explanation: Only defined variables or functions can
be specified as an export.

User Response: Define the function or variable.

CCN3398 Bit-field type specified for &1 is
non-portable. The type should be
signed int, unsigned int or int.

Explanation: The specification of the bit-field type may
cause problems with porting the code to another
system.

User Response: Change the type specifier.

CCN3399 The alignment of a structure/union is
determined at the left brace of the
definition.

Explanation: The alignment of an aggregate is
constant throughout its definition.

CCN3400 #pragma &1 must appear only once in
any C file.

User Response: Remove all but one of the specified
#pragma directives.

CCN3401 Function &1 must be defined for
#pragma entry.

Explanation: The function must be defined for it to be
specified using #pragma entry.

User Response: Define the function.

CCN3402 &1 must be an externally-defined
function for use with #pragma entry.

Explanation: The identifier must be defined as a
function with external linkage for it to be specified using
#pragma entry.

User Response: Define the function.

CCN3408 The linkage protocol is not supported
on the target platform.

Explanation: An attempt to use an unsupported
linkage protocol was made.

User Response: Remove the linkage protocol
keywords.

CCN3409 The static variable ’&1’ is defined but
never referenced.

Explanation: A variable that is defined but never used
probably serves no purpose.

User Response: Remove the variable definition if you
are not going to use the variable.

CCN3410 The automatic variable ’&1’ is defined
but never referenced.

Explanation: A variable that is defined but never used
likely serves no purpose.

User Response: Remove the variable definition.

CCN3411 An array that is not an lvalue cannot
be subscripted.

Explanation: A non-lvalue array is created when a
function returns a structure that contains an array. This
array cannot be dereferenced.

78 z/OS V1R2.0 C/C++ Messages

User Response: Remove the subscript.

CCN3412 Referenced variable ’&1’, which was
not initialized in its declaration.

Explanation: The variable referenced was not
initialized in its declaration. At the point of the first
reference, the variable might or might not have already
been set to a value, depending on the code executed
prior to the point of the first reference.

User Response: This is an informational message to
aid debugging. Either initialize the variable in its
declaration, or trace the code carefully to make sure
that it is set to a value prior to the first reference.

CCN3413 A goto statement is used.

Explanation: The use of goto statements may result in
code that is more difficult to trace.

User Response: Replace the goto statement with
equivalent structured-programming constructs.

CCN3414 The parameter ’&1’ is never referenced.

Explanation: The parameter is passed to the function,
but is not referenced anywhere within the function body.

User Response: Remove the parameter from the
function prototype.

CCN3415 The external function definition ’&1’ is
never referenced.

Explanation: A function that is defined but never used
likely serves no purpose.

User Response: Remove the function definition,
unless needed in another compilation unit.

CCN3416 Taking the negative of the most
negative value, ’&1’, of a signed type
will cause truncation.

Explanation: The negative of the most negative value
cannot be represented as a positive value of the same
type.

User Response: Change the value or use a larger
data type.

CCN3417 The function &1 is not defined but has
#pragma inline directive specified.

Explanation: A #pragma inline has been applied to an
identifier which does not exist or does not correspond to
a function.

User Response: Check that correct identifier is
specified or remove #pragma.

CCN3418 ’&1’ does not evaluate to a constant
that fits in its signed type.

Explanation: The expression evaluates to a number
that is not within the range that can be stored by the
target.

User Response: Change the expression so it
evaluates to a value in the valid range.

CCN3419 Converting &1 to type ″&2″ does not
preserve its value.

Explanation: The user cast converts &1 to a type that
cannot contain the value of the original type.

User Response: Change the cast.

CCN3420 An unsigned comparison is performed
between an unsigned value and a
negative constant.

Explanation: Comparing an unsigned value with a
signed value may produce unexpected results.

User Response: Type-cast the unsigned value to a
signed type if a signed comparison is desired, or
type-cast the negative constant to an unsigned type if
an unsigned comparison is desired.

CCN3421 The comparison is always true.

Explanation: The type specifiers of the values being
compared result in a constant result.

User Response: Simplify or remove the conditional
expression.

CCN3422 The comparison is always false.

Explanation: The type specifiers of the values being
compared result in a constant result.

User Response: Simplify or remove the conditional
expression.

CCN3423 The comparison may be rewritten as
’&1’.

Explanation: The type specifiers of the values being
compared may allow the expression to be simplified.

User Response: Simplify the comparison expression.

CCN3424 The condition is always true.

Explanation: Because the value of the conditional
expression is constant, it may be possible to simplify or
remove the conditional test.

User Response: Change the conditional expression or
remove the conditional test.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 79

CCN3425 The condition is always false.

Explanation: Because the value of the conditional
expression is constant, it may be possible to simplify or
remove the conditional test.

User Response: Change the conditional expression or
remove the conditional test.

CCN3426 An assignment expression is used as a
condition. An equality comparison (==)
may have been intended.

Explanation: A single equal sign ’=’ is often
mistakenly used as an equality comparison operator.

User Response: Ensure an assignment operation was
intended.

CCN3427 A constant expression is used as a
switch condition.

Explanation: The same code path will be taken
through every execution of the switch statement.

User Response: Change the switch expression to be
a non-constant value or remove the unused portions of
the switch structure.

CCN3428 The left-hand side of a shift expression
is an unparenthesized arithmetic
expression which has a higher
precedence.

Explanation: The left-hand expression is evaluated
before the shift operator.

User Response: Place parentheses around the
left-hand expression to make the order of operations
explicit.

CCN3429 The right-hand side of a shift
expression is an unparenthesized
arithmetic expression which has a
higher precedence.

Explanation: The right-hand expression is evaluated
before the shift operator.

User Response: Place parentheses around the
right-hand expression to make the order of operations
explicit.

CCN3430 The result of a comparison is either 0
or 1, and may not be appropriate as
operand for another comparison
operation.

Explanation: The comparison expression may be
malformed.

User Response: Ensure that the resulting value from

the comparison is appropriate for use in the following
comparison.

CCN3431 The left-hand side of a bitwise &&, |, or
| expression is an unparenthesized
relational, shift, or arithmetic
expression which has a higher
precedence.

Explanation: The left-hand expression is evaluated
before the bitwise operator.

User Response: Place parentheses around the
left-hand expression to make the order of operations
explicit.

CCN3432 The right-hand side of a bitwise &&, |,
or | expression is an unparenthesized
relational, shift, or arithmetic
expression which has a higher
precedence.

Explanation: The right-hand expression is evaluated
before the bitwise operator.

User Response: Place parentheses around the
right-hand expression to make the order of operations
explicit.

CCN3433 The right-hand side of a bitwise shift
expression should be positive and less
than the width in bits of the promoted
left operand.

Explanation: This expression may not be portable.

User Response: Change the shift expression.

CCN3434 The left-hand side of a bitwise right
shift expression has a signed
promoted type.

Explanation: This expression may not be portable.

User Response: Change the shift expression.

CCN3435 An expression statement should have
some side effects because its value is
discarded.

Explanation: If an expression statement has no side
effects, then it may be possible to remove the statement
with no change in program behaviour.

User Response: Change or remove the expression
statement.

CCN3436 Left-hand side of comma expression
should have side effects because its
value is discarded.

Explanation: A comma expression evaluates to its
right-hand operand.

80 z/OS V1R2.0 C/C++ Messages

User Response: Change the expression.

CCN3437 The init or re-init expression of a for
statement should have some side
effects since its value is discarded.

Explanation: If the init and/or the re-init expression of
a for statement have no side effects, the loop may not
execute as desired.

User Response: Change the init and/or re-init
expressions.

CCN3438 The value of the variable ’&1’ may be
used before being set.

Explanation: Because the variable has not been
initialized, its value is undefined. The results of using an
undefined variable are unpredictable.

User Response: Add an initialization statement or
change the expression.

CCN3439 Assigning enum type ’&1’ to enum
type ’&2’ may not be correct.

Explanation: The values of the enumerated types may
be incompatible.

User Response: Change the types of the values
being assigned.

CCN3440 Cannot assign an invalid enumerator
value to enum type ’&1’.

Explanation: The value being assigned is not a
member of the enumeration.

User Response: Change the value being assigned, or
make it an enumeration member.

CCN3441 The macro definition will override the
keyword ’&1’.

Explanation: Overriding a C keyword with a
preprocessor macro may cause unexpected results.

User Response: Change the name of the macro or
remove it.

CCN3442 A trigraph sequence occurs in a
character literal.

Explanation: The trigraph sequence will be converted.
A literal interpretation may have been desired.

User Response: Change the value of the character
literal.

CCN3443 A trigraph sequence occurs in a string
literal.

Explanation: The trigraph sequence will be converted.
A literal interpretation may have been desired.

User Response: Change the value of the string literal.

CCN3444 The opening brace is redundant.

Explanation: The initialization expression contains
extra, possibly unnecessary, braces.

User Response: Remove the extra braces.

CCN3445 The closing brace is redundant.

Explanation: The initialization expression contains
extra, possibly unnecessary, braces.

User Response: Remove the extra braces.

CCN3446 Array element(s) [&1] will be initialized
with a default value of 0.

Explanation: Some array elements were not explicitly
initialized. They will be assigned the default value.

User Response: Add initializations if necessary.

CCN3447 The member(s) starting from ’&1’ will
be initialized with a default value of 0.

Explanation: Some members were not explicitly
initialized. They will be assigned the default value.

User Response: Add initializations if necessary.

CCN3448 Assigning a packed struct to an
unpacked struct, or vice versa,
requires remapping.

Explanation: Assignments between packed/unpacked
structures may produce incorrect results.

User Response: Change the type qualifiers of the
values in the assignment.

CCN3449 Missing return expression.

Explanation: If a function has a non-void return type,
then all return statements must have a return
expression of the correct type.

User Response: Add a return expression.

CCN3450 Obsolete non-prototype-style function
declaration.

Explanation: The K&R-style function declaration is
obsolete.

User Response: Change the function declaration to
the prototyped style.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 81

CCN3451 The target integral type cannot hold all
possible values of the source integral
type.

Explanation: Data loss or truncation may occur
because of the type conversions.

User Response: Change the types of the values in
the expression.

CCN3452 Assigning a floating point type to an
integral type may result in truncation.

Explanation: Data loss or truncation may occur
because of the type conversions.

User Response: Change the types of the values in
the expression.

CCN3453 Assigning a floating point type to
another floating point type with less
precision.

Explanation: Data loss or truncation may occur
because of the type conversions.

User Response: Change the types of the values in
the expression.

CCN3454 &1 condition evaluates to &2.

Explanation: This message traces preprocessor
expression evaluation.

User Response: No response required.

CCN3455 defined(&1) evaluates to &2.

Explanation: This message traces preprocessor #ifdef
and #ifndef evaluation.

User Response: No response required.

CCN3456 Stop skipping tokens.

Explanation: This messages traces conditional
compilation activity.

User Response: No response required.

CCN3457 File &1 has already been included.

Explanation: This #include directive is redundant.

User Response: Remove the #include directive.

CCN3458 #line directive changing line to &1 and
file to &2.

Explanation: This message traces #line directive
evaluation.

User Response: No response required.

CCN3459 #line directive changing line to &1.

Explanation: This message traces #line directive
evaluation.

User Response: No response required.

CCN3460 &1 nesting level is &2.

Explanation: This message traces conditional
compilation activity.

User Response: No response required.

CCN3461 Generating precompiled header file &1.

Explanation: This message traces precompiled
header generation activity.

User Response: No response required.

CCN3462 Precompiled header file &1 is found
but not used because it is not up to
date.

Explanation: This message traces precompiled
header file generation activity.

User Response: No response required.

CCN3463 Using precompiled header file &1.

Explanation: This message traces precompiled
header file generation activity.

User Response: No response required.

CCN3464 Begin skipping tokens.

Explanation: This messages traces conditional
compilation activity.

User Response: No response required.

CCN3465 #undef undefining macro name &1.

Explanation: This message traces #undef
preprocessor directive evaluation.

User Response: No response required.

CCN3466 Unary minus applied to an unsigned
type.

Explanation: The negation operator is inappropriate
for unsigned types.

User Response: Remove the operator or change the
type of the operand.

82 z/OS V1R2.0 C/C++ Messages

CCN3467 String literals concatenated.

Explanation: Two string literals, each delimited by
quotation marks, have been combined into a single
literal.

User Response: No response is necessary. This is an
informational message.

CCN3468 Macro name &1 on #define is also an
identifier.

Explanation: The name of the macro has already
been used.

User Response: Change the name of the macro.

CCN3469 The static function ’&1’ is declared or
defined but never referenced.

Explanation: A function that is defined but never used
serves no purpose.

User Response: Remove the function definition.

CCN3470 Function ’main’ should return int, not
void.

Explanation: According to the ANSI/ISO standard,
main should return int not void. Earlier standards (such
as k&R) allowed a void return type for main.

User Response: Change the return type of the
function.

CCN3471 Case label is not a member of enum
type ’&1’

Explanation: Case labels must be members of the
type of the switch expression.

User Response: Change the value of the case label.

CCN3472 Statement is unreachable.

Explanation: The flow of execution causes this
statement to never be reached.

User Response: Change the control flow in the
program, or remove the unreachable statement.

CCN3473 An unintended semi-colon may have
created an empty loop body.

Explanation: The loop body has no statements, and
the conditional expression has no side effects.

User Response: If this is what was intended, use ’{}’
instead of a semi-colon as empty loop body to avoid
this message.

CCN3474 Loop may be infinite.

Explanation: The value of the conditional expression
and/or the lack of exit points may result in an infinite
loop.

User Response: Adjust the conditional expression or
add loop exit statements.

CCN3475 The real constant arithmetic
expression folds to positive infinity.

Explanation: Constant folding results in an overflow.

User Response: Change the expression.

CCN3476 The real constant arithmetic
expression folds to negative infinity.

Explanation: Constant folding results in an overflow.

User Response: Change the expression.

CCN3478 The then branch of conditional is an
empty statement.

Explanation: If the condition is true, then no statement
is executed.

User Response: Add a statement to be executed, or
remove the conditional statement.

CCN3479 Both branches of conditional
statement are empty statements.

Explanation: A conditional statement with empty
branches is possibly degenerate.

User Response: Add code to the conditional
branches.

CCN3480 Missing break statement allows
fall-through to this case.

Explanation: The preceding case did not end with a
break, return, or goto statement, allowing the path of
execution to fall-through to the code in this case.

User Response: Add an appropriate terminating
statement to the previous case, unless the fall-through
was intentional.

CCN3481 The end of the function may be
reached without returning a value.

Explanation: A return statement should be used to
exit any function whose return type is non-void.

User Response: Add a return statement, or change
the function to return void.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 83

CCN3482 The opening brace before this point is
redundant.

Explanation: The initialization expression contains
extra, possibly unnecessary, braces.

User Response: Remove the extra braces.

CCN3483 Switch statement contains no cases or
only default case.

Explanation: Code within a switch statement block
that is not preceded by either ’default’ or ’case’ is never
executed, and may be removed. Switch statements with
neither ’default’ or ’case’ are probably incorrect.

User Response: Change the switch statement to
include cases.

CCN3484 External name &1 has been truncated
to &2.

Explanation: The external name exceeds the
maximum length and has been truncated. This may
result in unexpected behavior if two different names
become the same after truncation.

User Response: Reduce the length of the external
name.

CCN3485 Parameter declaration list is
incompatible with declarator for &1.

Explanation: An attempt has been made to attach a
parameter declaration list with a declarator which cannot
have one.

User Response: Change declarator or remove
parameter declaration list.

CCN3486 A pointer to an incomplete type cannot
be indexed.

Explanation: An index has been used with a pointer
to an incomplete type.

User Response: Declare the type that is pointed at or
remove the index.

CCN3487 An argument cannot be an incomplete
struct or union.

Explanation: An incomplete aggregate cannot be
used as an argument to a function.

User Response: Declare the type that is pointed at or
use a pointer to the aggregate.

CCN3489 The incomplete struct or union tag &1
was not completed before going out of
scope.

Explanation: A struct or union tag was declared inside
a parameter list or a function body, but no member
declaration list was provided.

User Response: If the struct or union tag was
declared inside a parameter list, provide a member
declaration list at file scope. If the tag was declared
inside a function body, provide a member declaration list
within that function body.

CCN3490 The static variable ’&1’ is set but never
referenced.

Explanation: A variable that is initialized but never
used serves no purpose.

User Response: Remove the variable definition if you
do not intend to use it.

CCN3491 The automatic variable ’&1’ is set but
never referenced.

Explanation: A variable that is initialized but never
used likely serves no purpose.

User Response: Remove the variable definition if you
do not intend to use it.

CCN3492 Redefinition of &1 hides previous
definition.

Explanation: The definition within the current scope
hides a definition with the same name in an enclosing
scope.

User Response: Change the name to avoid redefining
it.

CCN3493 The external variable ’&1’ is defined
but never referenced.

Explanation: A variable that is defined but never used
likely serves no purpose.

User Response: Remove the variable definition,
unless needed in another compilation unit.

CCN3494 The external variable ’&1’ is set but
never referenced.

Explanation: A variable that is initialized but never
used serves no purpose.

User Response: Remove the variable definition,
unless needed in another compilation unit.

84 z/OS V1R2.0 C/C++ Messages

CCN3495 Pointer type conversion found.

Explanation: An attempt is being made to convert a
pointer of one type to a pointer of another type.

User Response: Check the types of the values
involved in the expression, and make them compatible.

CCN3496 Parameter(s) for #pragma &1 are of the
wrong type.

Explanation: The parameter for the pragma is
incorrect and of the wrong type.

User Response: Look up correct type in the C/C++
Language Reference.

CCN3497 Incomplete enum type not allowed.

Explanation: An incomplete enum is being used
where a complete enum type is required.

User Response: Complete the type declaration.

CCN3498 Member of struct or union cannot be
incomplete type.

Explanation: An incomplete aggregate is being used
where a complete struct or union is required.

User Response: Complete the type declaration.

CCN3499 Function ’main’ should return int.

Explanation: A return type other than int was specified
for function main.

User Response: Change the return type to int.

CCN3503 Option ″&1″ is not supported for &2.

Explanation: The option specified is not supported on
this operating system.

User Response: Remove the option.

CCN3505 Type ″&1″ of identifier ″&2″ was
incomplete at the end of its scope.

Explanation: A incomplete declaration was made of
some identifier and it is still incomplete at the end of its
scope.

User Response: Complete the declaration.

CCN3508 Option &1 for #pragma &2 is not
supported.

Explanation: For a list of all valid options for #pragma
directives, see the C/C++ Language Reference.

User Response: Ensure the #pragma syntax and
options are correct.

CCN3509 Symbol &1 on a #pragma &2 was not
found.

Explanation: For a list of all valid options for #pragma
directives, see the C/C++ Language Reference.

User Response: Ensure the #pragma syntax and
options are correct.

CCN3512 An initializer is not allowed for ″&1″.

Explanation: An attempt was made to initialize an
identifier whose type does not permit initialization.

User Response: Remove the initializer.

CCN3513 Array element designator exceeds the
array dimension. Designator will be
ignored.

Explanation: The value of the designator was larger
than the dimension declared for the array object.

User Response: Change the expression forming the
array index.

CCN3514 Array element designator cannot be
applied to an object of type ″&1″.

Explanation: An array element designator can only be
applied to an object of array type.

User Response: Remove subscript.

CCN3515 Member designator cannot be applied
to an object of type ″&1″.

Explanation: A member designator can only be
applied to an object of type struct or union.

User Response: Remove member designator.

CCN3517 Option &1 for #pragma is not
supported.

Explanation: For a list of all valid options for #pragma
directives, see the C/C++ Language Reference.

User Response: Ensure the #pragma syntax and
options are correct.

CCN3518 Option(s) for #pragma &1 are missing
or incorrectly specified.

Explanation: #pragma &1 is not correctly specified.

User Response: Ensure the #pragma syntax and
options are correct.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 85

CCN3519 Index operator ([]) cannot be applied to
pointer to void.

Explanation: Index operator ([]) can only be applied to
arrays or pointers to objects.

User Response: Change the operand.

CCN3520 Switch block begins with declarations
or unlabeled statements that are
unreachable.

Explanation: Code within a switch block must be
labeled with either ’case’ or ’default’ to be reachable.

User Response: Add a label or remove the
unreachable code.

CCN3521 Pointer arithmetic can only be applied
to a arrays that are lvalues.

Explanation: Because the array is
compiler-generated, it is not an lvalue. Therefore, you
cannot apply pointer arithmetic to it.

User Response: Change the expression.

CCN3522 Unable to open precompiled header &1
for output.

Explanation: The compiler was unable to open the
precompiled header file.

User Response: Ensure that the compiler has write
access to the precompiled header files.

CCN3524 The _Packed qualifier can only qualify
a struct or union.

Explanation: The _Packed qualifier is only valid for
structures and unions.

User Response: Remove _Packed qualifier.

CCN3531 End of precompiled header processing.

Explanation: The compiler has finished processing a
precompiled header.

User Response: No response required. This message
merely traces the activity of the precompiled header
processing.

CCN3532 Macro ″&1″ is required by the
precompiled header and is defined
differently than when the precompiled
header was created.

Explanation: The referenced macro was expanded
during the creation of the precompiled header and is
now defined differently. This prevents the precompiled
header from being used for this compilation.

User Response: If necessary, redefine the macro, or

regenerate the precompiled header using the new
macro definition.

CCN3533 One or more assertions are defined
that were not defined when the
precompiled header was created.

Explanation: An assertion is defined that was not
defined when the precompiled header was generated.
Because the effect of the new assertion is unknown, the
precompiled header cannot be used for this compilation.

User Response: Do not define the assertion, or
regenerate the precompiled header with the new
assertion.

CCN3534 One or more macros are defined that
were not defined when the
precompiled header was created.

Explanation: A macro is defined that was not defined
when the precompiled header was generated. Because
the effect of the new macro is unknown, the
precompiled header cannot be used for this compilation.

User Response: Do not define the macro or
regenerate the precompiled header with the new macro.

CCN3535 Compiler options do not match those
in effect when the precompiled header
was created.

Explanation: The compiler options in use are not
compatible with those used when the precompiled
header was generated. The precompiled header cannot
be used.

User Response: Use the same options as when the
precompiled header was generated or regenerate the
precompiled header with the new options.

CCN3536 Assertion ″&1″ is required by the
precompiled header and is not defined.

Explanation: The referenced assertion was tested
during the creation of the precompiled header and is not
defined. This prevents the precompiled header from
being used for this compilation.

User Response: If necessary, redefine the assertion,
or regenerate the precompiled header without the
assertion.

CCN3537 Macro ″&1″ is required by the
precompiled header and is not defined.

Explanation: The referenced macro was expanded
during the creation of the precompiled header and is not
defined. This prevents the precompiled header from
being used for this compilation.

User Response: If necessary, redefine the macro, or
regenerate the precompiled header without the macro.

86 z/OS V1R2.0 C/C++ Messages

CCN3538 Unable to use precompiled header &1.

Explanation: The precompiled header cannot be used
for this compilation. A subsequent message will explain
the reason.

User Response: Correct the problem indicated by the
subsequent message.

CCN3539 Expecting &1 and found &2.

Explanation: The header file being included is not the
next header in the sequence used to generate the
precompiled header. The precompiled header cannot be
used for this compilation.

User Response: #include the correct header or
regenerate the precompiled header using the new
sequence of #include directives.

CCN3545 The decimal size is outside the range
of 1 to &1.

Explanation: The specified decimal size should be
between 1 and DEC_DIG.

User Response: Specify the decimal size between 1
and DEC_DIG.

CCN3546 The decimal precision is outside the
range of 0 to &1.

Explanation: The specified decimal precision should
be between 0 and DEC_PRECISION.

User Response: Specify the decimal precision
between 0 and DEC_PRECISION.

CCN3547 The decimal size is not valid.

Explanation: The decimal size must be a positive
constant integral expression.

User Response: Specify the decimal size as a
positive constant integral expression.

CCN3548 The decimal precision is not valid.

Explanation: The decimal precision must be a
constant integral expression.

User Response: Specify the decimal precision as a
constant integral expression.

CCN3549 The decimal precision is bigger than
the decimal size.

Explanation: The specified decimal precision should
be less than or equal to the decimal size.

User Response: Specify the decimal precision less
than or equal to the decimal size.

CCN3550 The decimal constant is out of range.

Explanation: The compiler detected a decimal
overflow in scanning a decimal constant.

User Response: Change the decimal constant so that
it does not exceed the maximum value.

CCN3551 The fraction part of the result was
truncated.

Explanation: Due to limitations on the number of
digits representable, the calculated intermediate result
may result in truncation in the decimal places after the
operation is performed.

User Response: Check to make sure that no
significant digit is lost.

CCN3552 The pre- and post- increment and
decrement operators cannot be applied
to type &1.

Explanation: The decimal types with no integral part
cannot be incremented or decremented.

User Response: Reserve at least one digit in the
integral part of the decimal types.

CCN3553 Only decimal types can be used with
the &1 operator.

Explanation: The operand of the digitsof or
precisionof operator is not valid. The digitsof and
precisionof operators can only be applied to decimal
types.

User Response: Change the operand.

CCN3554 Whole-number-part digits in the result
may have been lost.

Explanation: Due to limitations on the number of
digits representable, the calculated intermediate result
may result in loss of digits in the integer portion after
the operation is performed.

User Response: Check to make sure that no
significant digit is lost.

CCN3555 Digits have been lost in the
whole-number part.

Explanation: In performing the operation, some
non-zero digits in the whole-number part of the result
are lost.

CCN3556 Digits may have been lost in the
whole-number part.

Explanation: In performing the operation, some digits
in the whole-number part of the result may have been
lost.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 87

User Response: Check to make sure that no
significant digit is lost.

CCN3557 The name in option &1 is not valid. The
option is reset to &2.

Explanation: The name specified as a suboption of
the option is syntactically or semantically incorrect and
thus can not be used.

User Response: Make sure that the suboption
represents a valid name. For example, in option
LOCALE(localename), the suboption ’localename’ must
be a valid locale name which exists and can be used. If
not, the LOCALE option is reset to NOLOCALE.

CCN3558 #pragma &1 is ignored because the
locale compiler option is not specified.

Explanation: The locale compiler option is required for
#pragma &1

User Response: Remove all the #pragma &1
directives or specify the locale compiler option.

CCN3559 #pragma filetag is ignored because the
conversion table from &1 to &2 cannot
be opened.

Explanation: During compilation, source code is
converted from the code set specified by #pragma
filetag to the code set specified by the locale compiler
option, if they are different. A conversion table form &1
to &2 must be loaded prior to the conversion. No
conversion is done when the conversion table is not
found.

User Response: Create the conversion table from &1
to &2 and ensure it is accessible from the compiler. If
message files are used in the application to read and
write data, a conversion table from &2 to &1 must also
be created to convert data from runtime locale to the
compile time locale.

CCN3560 Error messages are not converted
because the conversion table from &1
to &2 cannot be opened.

Explanation: Error messages issued by C/370 are
written in code page 1047. These messages must be
converted to the code set specified by the locale
compiler option because they may contain variant
characters, such as #. Before doing the conversion, a
conversion table from &1 to &2 must be loaded. The
error messages are not converted because the
conversion table cannot be found.

User Response: Make sure the conversion table from
&1 to &2 is accessible from the compiler.

CCN3561 No conversion on character &1
because it does not belong to the input
code set &2.

Explanation: No conversion has be done for the
character because it does not belong to the input code
set.

User Response: Remove or change the character to
the appropriate character in the input code set.

CCN3562 Incomplete character or shift sequence
was encountered during the
conversion of the source line.

Explanation: Conversion stops because an
incomplete character or shift sequence was
encountered at the end of the source line.

User Response: Remove or complete the incomplete
character or shift sequence at the end of the source
line.

CCN3563 Only conversion table that map single
byte characters to single byte
characters is supported.

Explanation: Compiler is expected single byte to
single byte character mapping during conversion.
Conversion stops when there is insufficient space in the
conversion buffer.

User Response: Make sure the conversion table is in
single byte to single byte mapping.

CCN3564 Invalid conversion descriptor was
encountered during the conversion of
the source line.

Explanation: No conversion was performed because
conversion descriptor is not valid.

CCN3565 #pragma &1 must appear on the first
directive before any C code.

Where: &1 pragma type *CHAR 100

User Response: Put this #pragma as the first directive
before any C code.

CCN3566 Option DECK ignored because option
OBJECT specified.

Explanation: The second option must not be specified
for the first to have an effect.

User Response: Remove the first or second option.

88 z/OS V1R2.0 C/C++ Messages

CCN3567 Option OFFSET ignored because
option LIST not specified.

Explanation: The second option must be specified for
the first to have an effect.

User Response: Specify the second option, or remove
the first.

CCN3568 The external name &1 in #pragma
csect conflicts with another csect
name.

Explanation: A #pragma csect was specified with a
name which has already been specified as a csect
name.

User Response: Ensure that the two csect names are
unique.

CCN3569 A duplicate #pragma csect(&1) is
ignored.

Explanation: Only one #pragma csect may be
specified for either CODE or STATIC.

User Response: Remove the duplicate #pragma
csect.

CCN3570 The #pragma map name &1 must not
conflict with a #pragma csect name or
the csect name generated by the
compiler.

Explanation: The external name used in the #pragma
map is identical to the external name specified on the
#pragma csect or the name generated by the compiler.

User Response: Change the name on the #pragma
csect or turn off the CSECT option.

CCN3571 The external name &1 must not conflict
with the name in #pragma csect or the
csect name generated by the compiler.

Explanation: The external name specified is identical
to the name specified on a #pragma csect or the name
generated by the CSECT option.

User Response: Change the name on the #pragma
csect or turn off the CSECT option.

CCN3572 Expected text &1 was not encountered
on option &2.

User Response: Use the correct syntax for specifying
the option

CCN3573 To use the builtin form of the &1
function add the #include <&2>
directive.

User Response: Add the specified #include in order to
optimize code.

CCN3574 Unable to open event file &1.

Explanation: The compiler was unable to open the
event file.

User Response: Ensure that there is enough disk
space.

CCN3575 Csect option is ignored due to naming
error.

Explanation: The compiler was unable to generate
valid csect names.

User Response: Use #pragma csect to name the
code and static control sections.

CCN3576 Csect name &1 has been truncated to
&2.

Explanation: The static, data and test csect names
have been truncated to 8 characters.

CCN3577 Obsolete option OPTIMIZE(2) defaults
to OPTIMIZE(1).

Explanation: Optimize(2) is no longer supported and
has been defaulted to 1.

CCN3578 The csect name &1 must not conflict
with a csect name generated by the
compiler.

Explanation: The code and static csect names are
identical. Either the compiler is unable to generate
unique names or a #pragma csect is using a duplicate
name.

User Response: Use #pragma csect to name the
code and static control sections.

CCN3585 Obsolete option HWOPTS defaults to
corresponding ARCHITECTURE option.

Explanation: HWOPTS is no longer supported and
has been replaced by ARCHITECTURE.

User Response: Use the ARCHITECTURE option to
take advantage of hardware.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 89

CCN3586 Test csect name &1 has been
truncated to &2.

Explanation: The compiler generated test csect name
has been truncated to 8 characters.

User Response: Use the CSECT() option to allow test
csect names longer than 8 chars.

CCN3600 3600 - 3631 are LE messages.

Explanation: Refer to the LE manuals for further
information about these messages

CCN3671 The header file name in the #include
directive cannot be empty.

User Response: Specify a non-empty header file
name in the #include directive.

CCN3675 The return type is not valid for a
function of this linkage type

Explanation: The linkage type of the function puts
certain restrictions on the return type, on which the
function definition violated.

User Response: Check the linkage type restrictions
and change the return type.

CCN3676 Function ″&1″ which returns a return
code cannot be defined.

Explanation: The function has FORTRAN linkage type
with the RETURNCODE option. Therefore it should be a
FORTRAN function defined somewhere else and
referenced here (should not be defined in the compile
unit).

User Response: Make sure the function is a
FORTRAN function.

CCN3677 Option LONGNAME is turned on
because option DLL is specified.

Explanation: Option LONGNAME is turned on by the
compiler because DLL option is specified.

CCN3678 Option RENT is turned on because
option DLL is specified.

Explanation: Option RENT is turned on by the
compiler because DLL option is specified.

CCN3679 Option LONGNAME is turned on
because option EXPORTALL is
specified.

Explanation: Option LONGNAME is turned on by the
compiler because EXPORTALL option is specified.

CCN3680 Option RENT is turned on because
option EXPORTALL is specified.

Explanation: Option RENT is turned on by the
compiler because EXPORTALL option is specified.

CCN3681 #pragma export(&1) is ignored; both
LONGNAME and RENT options must
be specified.

Explanation: The variable/function is not exported
because both LONGNAME and RENT must be
specified to export functions/variables.

User Response: Make sure both LONGNAME and
RENT options are specified.

CCN3682 ″&1″ will not be exported because
#pragma variable(&2,NORENT) is
specified.

Explanation: Variables with NORENT option cannot
be exported.

CCN3683 ″&1″ will not be exported because it
does not have external storage class.

Explanation: Only objects with external storage class
can be exported.

CCN3684 Exporting function main is not allowed.

Explanation: Main cannot be exported.

User Response: Remove the pragma export for main.

CCN3685 ″&1″ will not be exported because it is
not external defined.

Explanation: The variable cannot be exported
because it is not defined here.

User Response: Remove the pragma export for the
variable.

CCN3686 Unexpected keyword(s). One or more
keywords were found in an invalid
location.

Explanation: One or more keywords were found in an
invalid location.

User Response: Remove the keyword(s) or place
them immediately to the left of the identifier to which
they apply.

CCN3687 The &1 keyword cannot be applied to
the return type of a function.

Explanation: The keyword is being applied to the
return type of a function.

User Response: Remove the keyword.

90 z/OS V1R2.0 C/C++ Messages

CCN3688 Declaration cannot specify conflicting
keywords &1 and &2.

Explanation: The keywords conflict and cannot both
be used in the same declaration.

User Response: Remove one of the keywords.

CCN3689 The &1 keyword was specified more
than once in the declaration.

Explanation: The keyword was used more than once
in the same declaration.

User Response: Remove one of the keywords.

CCN3690 Builtin function &1 is unrecognized.
The default linkage convention is used.

Explanation: The function specified in the pragma
linkage builtin is not a builtin function.

User Response: Check the function name and
correct; or remove the pragma if it is not a builtin
function.

CCN3691 The &1 keyword can only be applied to
functions.

Explanation: The keyword has been applied to an
identifier which does not correspond to a function type.

User Response: Check that the correct identifier is
specified or remove the keyword.

CCN3692 Both ″main″ and ″WinMain″ are defined
in this compilation unit. Only one of
them is allowed.

Explanation: In each compilation unit, only one of
″main″ and ″WinMain″ is allowed.

User Response: Remove either ″main″ or ″WinMain″.

CCN3693 The &1 keyword conflicts with a
previously specified keyword.

Explanation: The keyword conflicts with another
keyword specified in the same declaration.

User Response: Remove one of the keywords.

CCN3694 Option LONGNAME is turned on
because a qualifier is specified on the
CSECT option.

Explanation: Option LONGNAME is turned on by the
compiler when the CSECT option is specified with a
qualifier.

CCN3695 #pragma export(&1) is ignored;
LONGNAME option must be specified.

Explanation: The variable/function is not exported
because LONGNAME must be specified to export
functions/variables.

User Response: Make sure LONGNAME option is
specified.

CCN3708 Only functions or typedefs of functions
can be specified on #pragma linkage
directive.

Explanation: The name specified on #pragma linkage
is not a function.

User Response: Check for typo errors; remove the
#pragma linkage.

CCN3709 Structure members cannot follow
zero-sized array.

Explanation: The zero-sized array must be the last
member in the structure.

User Response: Remove members that occur after
the zero-sized array.

CCN3710 Option &1 ignored because option &2
specified.

CCN3711 Option &1 ignored.

CCN3712 Duplicate function specifier ″&1″ ignored.

CCN3713 Keyword ″&1″ is not allowed.

CCN3714 #include searching for file &1.

CCN3715 Storage class &1 cannot be used for
structure members.

Explanation: The storage class is not appropriate for
this declaration. Restrictions include: 1) Storage class
specifier not allowed on aggregate members, casts,
sizeof or offsetof declarations. 2) Declarations at file
scope cannot have ’register’ or ’auto’ storage class.

User Response: Specify a different storage class.

CCN3717 Only external data and functions can
be declared as export or import.

Explanation: Either the _Export or _Import keyword,
or #pragma export or #pragma import was used with
data or a function which is not external.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 91

CCN3721 The ″&1″ qualifier is not supported on
the target platform.

Explanation: The specified qualifier is not supported
on the target platform and will have no effect.

CCN3722 #pragma linkage &1 ignored for
function &2.

Explanation: A conflicting linkage type, or a #pragma
environment, has been specified for this function.

User Response: Check what has been specified
before and remove the conflicts.

CCN3723 #pragma environment is ignored
because function &1 already has
linkage type &2.

Explanation: A pragma linkage has already been
specified and used for this function, and is in conflict
with the pragma environment directive. The latter is
ignored.

User Response: Remove the pragma linkage or
environment directive.

CCN3724 Undefined identifier ″&1″ was
referenced in #pragma &2 directive.

Explanation: A #pragma is referring to an identifier
that has not been defined.

User Response: Define the identifier or remove the
#pragma.

CCN3728 Operation between types ″&1″ and ″&2″
is not recommended.

Explanation: The operation specified is improper
between the operands having the given types.
(Accepted.)

User Response: Either change the operator or the
operands.

CCN3729 ″&1″ must not be declared inline or
static.

Explanation: Although ″&1″ is not a keyword, it is a
special function that cannot be inlined or declared as
static.

User Response: Remove the inline or static specifier
from the declaration of ″&1″.

CCN3730 The pragma is accepted by the
compiler. The pragma will have no
effect.

Explanation: The pragma is not supported by this
compiler.

User Response: The pragma can be removed if
desired.

CCN3731 The &1 keyword is not supported on
the target platform. The keyword is
ignored.

Explanation: The specified keyword is not supported
on the target platform and will have no effect.

CCN3732 #pragma &1 is not supported on the
target platform.

Explanation: The specified #pragma is not supported
on the target platform and will have no effect. See the
C/C++ Language Reference for the list of valid #pragma
directives.

User Response: Change or remove the #pragma
directive.

CCN3733 Processing #include file &1.

Explanation: This message traces #include file
processing.

User Response: No response required.

CCN3735 Suboption &1 of &2 ignored because
&3 is specified.

Explanation: Suboption &1 of &2 cannot be specified
with option &3. &1 is ignored.

User Response: Remove the suboption &1 or the
option &3.

CCN3736 &1 conflicts with previous &2
declaration.

Explanation: The compiler cannot resolve the
conflicting declarations.

User Response: Remove one of the declarations.

CCN3737 The preprocessor macro ″&1″ was
expanded inside a pragma directive.

Explanation: A macro was expanded in the context of
a pragma directive. Please ensure that this is the
desired result.

User Response: Ensure that the macro was intended
for expansion.

CCN3739 Cannot create/use precompiled header
file because of memory address space
conflict. GENPCH/USEPCH options are
ignored.

Explanation: (1) If this a USEPCH compile, the PCH
address space (heap area) is not the same as in the
GENPCH compile. (2) If this is a GENPCH compile, the

92 z/OS V1R2.0 C/C++ Messages

persistent heap area is full. In either case, the
compilation will continue by ignoring the GENP/USEP
options.

User Response: (1) If this is a USEP compile, make
sure all the options/pragmas are the same as in
GENPCH compile, and the run time environment of the
compiler is the same (e.g. region size). (2) If this is a
GENP compile, try to reduce the number/size of
#include files in the initial sequence.

CCN3740 Timestamp information is not available
for #include header file. &1

Explanation: Timestamp information must be present
in ALL #include header files when using PCH.
Timestamp is absent in sequential datasets, and maybe
absent PDS.

User Response: Change any sequential dataset
header files into a PDS member. Make sure all PDS
member header files contain timestamp information.

CCN3741 Cannot use precompiled header file
because #pragmas mismatch before
the Initial Sequence.

Explanation: #pragmas appearing before the Initial
Sequence must be the same between the GENP and
USEP compile.

User Response: Make sure the #pragmas before the
Initial Sequence are the same. Use GENPCH to
regenerate the PCH file would also solve the problem.

CCN3750 Value of enumeration constant must be
in range of signed long.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the initial value must be an
integral expression that has a value representable as an
long.

User Response: Remove the initial value, or ensure
that it is an integral constant expression that has a
value representable as an long.

CCN3751 Value of enumeration constant must be
in range of unsigned long.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the value that it is initialized
to must be an integral expression that has a value
representable as an long.

User Response: Remove the initial value, or ensure
that it is an integral constant expression that has a
value representable as an long.

CCN3752 Number of enumerator constants
exceeds &1.

Explanation: The number of enumerator constant
must not exceed the value of &1.

User Response: Remove additional enum constants.

CCN3754 The parameter type is not valid for a
function of this linkage type

Explanation: The linkage type of the function puts
certain restrictions on the parameter type, on which the
function definition violated.

User Response: Check the linkage type restrictions
and change the parameter type.

CCN3755 The &1 option is not supported in this
release.

Explanation: The specified option is not supported in
this release.

User Response: Remove the option.

CCN3763 Option &1 ignored because #pragma &2
is specified.

CCN3764 Option &1 ignored for variable &2
because #pragma &3 is specified.

CCN3765 &1 digits are required for the
universal-character-name ″&2″.

CCN3766 The universal-character-name ″&1″ is not
in the allowable range for an identifier.

CCN3767 Packed decimal constant &1 is not
valid.

Explanation: See the C/C++ Language Reference for
a description of a packed decimal constant.

User Response: Ensure that the packed decimal
constant does not contain any characters that are not
valid.

CCN3769 Static initialization of the 8-byte pointer
is not allowed.

Explanation: Static initialization of an 8-byte pointer is
only allowed when the teraspace storage model is used.

User Response: Change the STGMDL option to
*TERASPACE or use a 16-byte pointer.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 93

CCN3770 The ″__ptr64″ qualifier is not supported
in a non-teraspace-enabled
environment.

Explanation: The ″__ptr64″ qualifier is only allowed
when teraspace is enabled.

User Response: Change the TERASPACE option to
*YES or remove the ″__ptr64″ qualifier.

CCN3771 #pragma datamodel(LLP64) directive is
not supported in a non-teraspace-
enabled environment.

Explanation: #pragma datamodel(LLP64) directive is
only allowed when teraspace is enabled.

User Response: Change the TERASPACE option to
*YES or remove the #pragma datamodel(LLP64)
directive.

CCN3772 An illegal typedef was specified for an
AS/400 pointer type.

Explanation: The typedef named for AS/400 pointer
types must be 16-byte void pointers.

User Response: Use typedefs of 16-byte void pointers
for AS4/00 pointer types.

CCN3773 The __ptr64 qualifier cannot be used
with a AS/400 pointer type.

Explanation: AS400 pointer types must be 16-byte in
size.

User Response: Remove the __ptr64 qualifier.

CCN3775 The #pragma datamodel directive must
appear at file scope.

Explanation: #pragma datamodel must be specified at
file scope.

User Response: Move the directive so that it appears
at file scope.

CCN3776 The required conditions for using the
builtin function ″&1″ are not met.

Explanation: The builtin function ″&1″ requires one or
more compiler options that are not currently active.

User Response: Specify the correct options to use the
builtin function.

CCN3777 The parameter in position &1 must be
a constant literal for the builtin
function ″&2″.

Explanation: The builtin function ″&2″ requires
parameter &1 to be a constant literal.

User Response: Specify a constant literal for the
parameter.

CCN3778 Type ″&1″ is not valid. Type specifier
″&2″ is assumed.

Explanation: The type ″&1″ is not valid; it is treated
as ″&2″.

User Response: Replace the unknown type specifier
with a correct one.

CCN3790 A threadprivate directive must appear
at file scope.

Explanation: #pragma omp threadprivate must be
specified at file scope.

User Response: Move the directive to the file scope.

CCN3791 An ordered directive is only allowed
within the dynamic extent of for or
parallel for that has an ordered clause.

Explanation: An ordered construct can appear only
within construct that has ordered clause specified.

User Response: Specify ordered clause on the
enclosing for or parallel for.

CCN3792 #pragma &1 may affect behavior of
nested or enclosing OpenMP
constructs.

Explanation: Pragma may be in conflict with OpenMP
functionality.

User Response: Remove pragma it is enclosing or is
nested within OpenMP construct.

CCN3793 Option &1 may cause behavior that is
different from the one described in
OpenMP API Specification.

Explanation: Option may be in conflict with OpenMP.

User Response: Remove the option.

CCN3794 Atomic directive is not followed by an
expression statement of the required
form.

Explanation: Atomic directive has to be followed by a
compound assignment expression or
increment/decrement expression statement.

User Response: Correct the statement.

94 z/OS V1R2.0 C/C++ Messages

CCN3795 Private variable ’&1’ appears in the &2
clause.

Explanation: Private variable cannot appear in that
clause.

User Response: Remove variable from the clause.

CCN3796 &1 construct cannot be nested within
&2 construct.

Explanation: OpenMP constructs are incorrectly
nested.

User Response: Correct the constructs.

CCN3797 &1 directive cannot appear within &2
construct.

Explanation: Directive is incorrectly nested.

User Response: Correct the directive.

CCN3798 Threadprivate variable ’&1’ appears in
the &2 clause.

Explanation: Threadprivate variable cannot appear in
that clause.

User Response: Remove variable from the clause.

CCN3799 OpenMP constructs cannot be used
with optimization level 0. Optimization
level 2 will be assumed.

Explanation: Optimization level 0 was specified for a
function that contains OpenMP construct.

User Response: Change the optimization level or
remove the construct.

CCN3805 String literal exceeded the compiler
limit of &1.

Explanation: String literal size cannot be larger than
the compiler limit

User Response: Reduce the size of the string literal.

CCN3810 #pragma runopts syntax (&1): &2

Explanation: Syntax error in the pragma. The
suboption syntax is the same as the corresponding LE
runtime option. Please refer to the LE manual for details
of the CEEnnnn message number.

User Response: Correct the syntax error.

CCN3811 Option &1 forces &2 to take effect.

Explanation: The first option in the message forces
the second one to take effect. Specify the second option
explicitly to suppress this message.

User Response: Specifiy the second option explicitly.

CCN3812 Option FLOAT(IEEE) may cause slow
execution time when used with ARCH
less than 3.

Explanation: Binary floating point operations (BFP)
needs hardware architecture (ARCH option) of 3 or
higher. For ARCH less than 3, BFP will work on OS
level V2R6 or higher, which provides software
emulation, but will significantly slow down the execution
time.

User Response: If the target hardware architecture is
3 or higher, specify it explicitly in ARCH.

CCN3813 Option FLOAT(AFP) may cause slow
execution time when used with ARCH
less than 3.

Explanation: The AFP suboption needs hardware
architecture (ARCH option) of 3 or higher. For ARCH
less than 3, BFP will work on OS level V2R6 or higher,
which provides software emulation, but will significantly
slow down the execution time.

User Response: If the target hardware architecture is
3 or higher, specify it explicitly in ARCH.

CCN3815 Conflicting qualifiers &1 and &2
specified.

Explanation: The identified qualifiers cannot both be
specified at the same time.

User Response: Remove one of the qualifiers.

CCN3862 Unable to read &1.

Where: &1 file *CHAR 100

Explanation: The compiler encountered an error while
reading from the specified file.

CCN3863 Unable to write to &1.

Where: &1 file *CHAR 100

User Response: Ensure that the disk drive is not in
an error mode and that there is enough disk space left.

CCN3870 The program name &1 has been
truncated to &2.

Explanation: The program name exceeds the
maximum length of 10 characters and has been
truncated. This may result in unexpected behavior if two
different names become the same name after
truncation.

User Response: Reduce the length of the program
name. Alternatively, use #pragma map to shorten
program name.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 95

CCN3871 #pragma &1 was ignored for function
or typedef &2.

User Response: Verify what has been specified and
remove the conflicts.

CCN3885 An anonymous union or struct
declared at file scope must be static.

Explanation: Anonymous tag at file scope level
cannot be non-static.

User Response: Declare all anonymous tags to be
static in file scope level.

CCN3886 Member ″&1″ is at offset ″&2″, not at
offset ″&3″ as specified in #pragma
assert_field_offset.

Explanation: The offset of member &1 is not at the
offset specified by the pragma.

User Response: Either fixing the aggregate which
contains the member or fixing the offset in the pragma.

CCN3887 The first operand in #pragma
assert_field_offset must be a struct, a
union, or a typedef of a struct or a
union. The pragma is ignored.

Explanation: The #pragma assert_field_offset cannot
be anything other than a struct, a union, or a typedef of
a struct or a union.

User Response: Change the first operand or remove
the pragma.

CCN3888 The first operand of #pragma
assert_field_offset is incomplete. The
pragma is ignored.

Explanation: An incomplete struct or union is not a
valid argument to ″#pragma assert_field_offset″. A
structure or union type is completed when the definition
of its tag is specified.

User Response: Ensure the struct or union is a
complete type.

CCN3889 Member ″&1″ is not declared as
specified in #pragma
″assert_field_offset″. The pragma is
ignored.

Explanation: The specified member does not belong
to the structure or union specified in the pragma.

User Response: Make sure the member is in the
structure or union specified in the pragma.

CCN3890 The declaration ″&1″ specified in
″#pragma assert_field_offset″ cannot
be found. The pragma is ignored.

Explanation: The declaration ″&1″ specified in
″#pragma assert_field_offset″ has not been declared.

User Response: Declare the type.

CCN3891 Subscript operator requires an array
operand in ″#pragma
assert_field_offset″. The pragma is
ignored.

Explanation: A subscript was specified in ″#pragma
assert_field_offset″ but the operand is not an array.

User Response: Either change the operand to be an
array type or remove the subscript operator.

CCN3892 Array index must be a constant
expression in ″#pragma
assert_field_offset″. The pragma is
ignored.

Explanation: The ″#pragma assert_field_offset″ is
evaluated at compile time. Thus all arguments must be
constant expressions.

User Response: Change the expression.

CCN3894 The &1 is not valid in 64-bit mode and
it is ignored.

Explanation: The &1 is not valid in 64-bit mode. It is
only supported in 32-bit mode.

User Response: Either remove &1 or compile it in
32-bit mode.

CCN3895 An aggregate containing long double
on IA64 platform might not have the
same size/alignment compared to that
on IA32 platform.

Explanation: An aggregate containing long double on
IA64 platform might not have the same size/alignment
compared to that on IA32 platform.

User Response: Replacing long double in the
aggregate or change to ia64 alignment rule.

CCN3896 Operand has type &1.

Where: &1 C type *CHAR 100

Explanation: An error has occurred due to conflicting
operands. This message states the type of the operand
used in the expression.

User Response: No recovery is necessary if this
result was intended. Change the type of the operand if
necessary.

96 z/OS V1R2.0 C/C++ Messages

CCN3897 Unstructured goto statement
encountered.

Explanation: The target label of a goto statement
should not be located in an inner block such as a loop.

User Response: Ensure the target label of the goto
statement is not located in an inner block.

CCN3898 The #include header &1 is not valid.

Where: &1 header *CHAR 100

Explanation: The name of the file specified on the
#include directive is not valid.

User Response: Remove or correct the #include
directive.

CCN3913 The enum constants must be specified
when the enum tag is declared.

Explanation: When an enumeration tag is declared,
the list of the enumeration constants must be included
in the declaration.

User Response: Add the list of enumeration constants
in the enum tag declaration.

CCN3919 Variable &1 was not explicitly
initialized.

Explanation: If not explicitly initialized, variables with
storage class auto or register contain indeterminate
values.

User Response: Initialize the variable.

CCN3920 Bitwise operator applied to a signed
type.

Explanation: Bitwise operators may change the value
of a signed type by shifting the bit used to indicate the
sign of the value.

User Response: Change the operand to an unsigned
type or remove the bitwise operation.

CCN3929 The usage of type generic macro ″&1″
conflicts with the previous declaration
of ″&2″.

Explanation: There is a prototype or defintion of
function ″&1″ which differs from the prototype of the ISO
C9X type generic macro.

User Response: Remove the prototype or defintion.

CCN3930 The function ″&1″ is not a type generic
macro.

Explanation: One should not use the __tg_builtin for
non- type generic macro.

User Response: Remove the call to __tg_builtin.

CCN3931 Dependency file &1 cannot be opened.

Where: &1 is a file name.

Explanation: Makedepend could not open the
specified dependency file.

User Response: Ensure the source file name is
correct. Ensure that the correct file is being read and
has not been corrupted. If the file is located on a LAN
drive, ensure the LAN is working properly. Also, the file
may be locked by another process or access may be
denied because of insufficient permission

CCN3932 Too few option specified for
makedepend.

User Response: Specify correct number of options for
makedepend.

CCN3933 Specify at least one source operand to
be processed.

CCN3934 Compiler option &1 is invalid for
compiler version &2.

Where: &1 is a compiler option, &2 is compiler
version.

Explanation: An invalid option was specified for the
compiler version specified for makedepend.

User Response: Change the compiler version to the
version that accepts this option, or remove this option.

CCN3935 Specify a valid -W phase code (0 or
c=compile, m=makedepend) instead of
&1.

Explanation: An invalid compiler phase was specified
for makedepend.

User Response: Specify a phase that is accepted by
makedepend.

CCN3936 Specify a series of options, separated by
commas, for the -W m option.

CCN3937 &1 has a dependency on include file
&2 which is located in an MVS data
set.

Where: &1 is an object file. &2 is a #include file.

Explanation: The specified #include file was found in
an MVS data set. No dependency information will be
recorded for this #include file.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 97

CCN3938 Unknown compiler version &1 for
makedepend option V. Using default
compiler version.

Where: &1 is a compiler version.

Explanation: An invalid compiler version was specified
for the makedepend option V.

User Response: Correct the compiler version.

CCN7500 The option ″%1$s″ is not supported.

Where: %1$s is an option.

Explanation: The command line contained an option
that is not supported. Note that some option parameters
must not have spaces between the option and the
parameter.

User Response: Remove the option. Check the
syntax of the options.

CCN7501 Suboption ″%1$s″ for option ″%2$s″ is
not supported on the target platform.

Where: %1$s is the suboption. %2$s is the option.

Explanation: The option has been specified with a
suboption that is not supported on the target platform.

User Response: change the suboption, or remove the
option.

CCN7502 Missing value for option ″%1$s″.

Where: %1$s is an option name

Explanation: The option was missing a required
parameter. See the ″User’s Guide″ for details on the
option.

User Response: Add a value for the option.

CCN7503 Unrecognized value ″%1$s″ specified
with option ″%2$s″.

Where: %1$s is the value specified with the option,.
%2$s is the option name.

Explanation: An inappropriate value was used with
the option.

User Response: Remove the unrecognized value.

CCN7504 ″%1$s″ is not a valid suboption for
″%2$s″. The option is ignored.

Where: %1$s is the suboption, %2$s is the option.

Explanation: The command line contained an option
with an invalid suboption.

User Response: Remove the suboption.

CCN7505 The value given for the ″priority″
option is in the range reserved for the
system.

Explanation: Priority values less than -2147482624
are reserved for system purposes.

User Response: Change the priority value so that it is
greater than -2147482624.

CCN7506 ″%1$s″ is no longer supported. The
option is ignored.

Where: %1$s is the outdated option.

Explanation: The command line contained an option
that is no longer supported by this release.

User Response: Remove the option.

CCN7507 Options ″%1$s″ and ″%2$s″ are not
compatible.

Where: %1$s and %2$s are both option names.

Explanation: The specified options cannot be used
together.

User Response: Change option values.

CCN7508 Suboption ″%1$s″ for option ″%2$s″ is
no longer supported. The suboption is
ignored.

Where: %1$s is the suboption. %2$s is the option.

Explanation: The command line contained a
suboption that is no longer supported by this release.

User Response: Remove the suboption.

CCN7509 The suboption specified for the ″%1$s″
option is not allowed when the ″%2$s″
option is specified.

Where: %1$s and %2$s are option names.

Explanation: The suboption specified in the first
option conflicts with the second option. The first option
is ignored.

User Response: Correct the conflicting option or
suboption.

CCN7510 Insufficient memory.

Explanation: The available memory has been
exhausted.

User Response: Provide more memory.

98 z/OS V1R2.0 C/C++ Messages

CCN7511 Either the default or user-defined
maximum number of error messages
has been exceeded.

Explanation: There have been too many errors to
continue.

User Response: Fix the previous errors.

CCN7512 Compiler cannot create temporary
files. The file system may be full or not
writable.

Explanation: The intermediate code files could not be
created. Please verify that the target file system exists,
is writable, and is not full.

User Response: Ensure that the designated location
for temporary objects exists, is writable, and is not full.

CCN7513 An error was detected while writing to
an temporary file. The file system may
be full.

Explanation: An error occurred writing to an
intermediate code file. Please verify that the target file
system exists, is writable, and is not full.

User Response: Ensure that the designated location
for temporary objects exists, is writable, and is not full.

CCN7517 The template registry file ″%1$s″ could
not be opened.

Where: ″%1$s″ is the template registry file name
designated by the templateregistry compiler option.

Explanation: A template registry file is created when
the templateregistry compiler option is enabled.

User Response: Ensure that file system permissions
allow files to be written, and that sufficient file system
resources exist to permit the creation of this file.

CCN7518 Error reading template registry file
″%1$s″.

Where: ″%1$s″ is the template registry file name
designated by the templateregistry compiler option

Explanation: The template registry file is corrupt.

User Response: Delete the template registry file and
recompile all of the source files using this registry.

CCN7519 Error writing to template registry file
″%1$s″.

Where: ″%1$s″ is the template registry file name
designated by the templateregistry compiler option.

Explanation: A template registry file is created when
the templateregistry compiler option is enabled.

User Response: Ensure that file system permissions

allow files to be written, and that sufficient file system
resources exist to permit the creation of this file.

CCN7599 The compiler could not open the
output file ″%1$s″.

Where: %1$s is a file name.

User Response: Ensure the output file name is
correct. Also, ensure that the location of the output file
has sufficient storage available. If using a LAN drive,
ensure that the LAN is working properly and you have
permission to write to the disk.

CCN7601 Goto statements should not be used.

Explanation: Goto statements are often lead to
difficult to maintain code.

User Response: Remove the goto statements

CCN7602 Ellipsis notation should not be used.

Explanation: Using ellipsis prevents type checking of
arguments.

User Response: Remove ellipsis

CCN7607 ″%1$s″ should probably define a
constructor.

CCN7608 ″%1$s″ should probably define a
destructor.

CCN7609 ″%1$s″ should probably define a copy
constructor.

CCN7611 Argument ″%1$s″ is not used in
function ″%2$s″.

Where: ″%1$s″ is used argument and ″%2$s″ where
the argument is declared

Explanation: The argument ″%1$s″ is specified but
not needed

User Response: Consider removing the argument
from the paramater list of the function

CCN7612 ″%1$s″ is set but not used in function
″%2$s″.

Where: ″%1$s″ is the variable that is set but not used
and ″%2$s″ is the function where the variable resides.

Explanation: A variable has been explicitly initialized
or assigned but is not referenced

User Response: Remove the variable if there are no
side-effects.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 99

CCN7613 The destructor in the base class of
″%1$s″ should be made virtual.

Where: ″%1$s″ is the base class to change.

Explanation: A virtual destructor in the base class
ensures that the proper destructor is called.

User Response: Declare the destructor with the virtual
keyword.

CCN7614 A user-defined copy
constructor/assignment operator
should be created in ″%1$s″ to handle
a pointer data member.

Where: ″%1$s″ is the class that has a pointer to data
member

Explanation: The compiler generated copy constructor
and assignment operator does a bitwise member copy.

User Response: Create a copy constructor and an
assignment operator

CCN7616 ″%1$s″ does not assign values to all
data members in the class.

Where: ″%1$s″ is the offending class

Explanation: Checks that all data members in a class
are assigned to when user defined assignment
operators are present

User Response: Assign value to data member

CCN7617 ″%1$s″ was not assigned.

Explanation: Data member that is not assigned

User Response: Assign value to data member

CCN7618 ″%1$s″ should be initialized using the
member initialization list.

Where: ″%1$s″ is the data member to initialize

Explanation: Initializing a data member is faster than
assignment in the constructor

User Response: Initialize data member in the
constructor list

CCN7619 ″%1$s″ should be initialized in the
same order as it is declared in ″%2$s″.

Where: ″%1$s″ is the data member to re-order

Explanation: Data members are initialized in the order
they are declared, the initialization list should reflect
this.

User Response: Re-order the initialization list to make
the declaration order

CCN7620 ″%1$s″ is a non-const namespace
variable and may cause problems in
multi-threaded code.

Where: ″%1$s″ is a variable in namescope scope

Explanation: Variables in namespace scope that are
not protected by a mutex may behave unexpectedly in
multi-threaded code

User Response: Don’t use variables in namespace
scope for multi-threaded code

CCN7621 ″%1$s″ is a global variable and may
cause problems in multi-threaded
code.

Where: ″%1$s″ is a global variable

Explanation: Global variables that are not protected
by a mutex may behave unexpectedly in multi-threaded
code

User Response: Don’t use global variables for
multi-threaded code

CCN7622 ″%1$s″ is a static local variable and
may cause problems in multi-threaded
code.

Where: ″%1$s″ is a static local variable

Explanation: Static local variables that are not
protected by a mutex may behave unexpectedly in
multi-threaded code

User Response: Don’t use static local variables for
multi-threaded code

CCN7623 ″%1$s″ is a static member variable and
may cause problems in multi-threaded
code.

Where: ″%1$s″ is a static member variable

Explanation: Static member variables that are not
protected by a mutex may behave unexpectedly in
multi-threaded code

User Response: Don’t use static member variables for
multi-threaded code

CCN7624 64-bit portability : possible truncation
of pointer through conversion of
pointer type into int type

Explanation: Possible truncation of pointer through
conversion of pointer type into int type

User Response: Change the int type to long

100 z/OS V1R2.0 C/C++ Messages

CCN7625 64-bit portability : possible truncation of
array through conversion of array type
into int type

CCN7626 64-bit portability : possible truncation of
function through conversion of
function type into int type

CCN7627 64-bit portability : possible incorrect
pointer through conversion of int type
into pointer

CCN7628 64-bit portability : possible loss of digits
through conversion of long type into
int type

CCN7629 64-bit portability : possible difference in
results. In 32-bit mode values greater
than INT_MAX would be truncated, but
not in 64-bit mode.

CCN7630 64-bit portability : possible difference in
results. In 32-bit mode values <
INT_MIN or > INT_MAX would be
truncated, but not in 64-bit mode.

CCN7631 64-bit portability : possible difference in
results. Values < 0 would give different
results in 64-bit mode, values >
UINT_MAX would be truncated in 32-bit
mode but not in 64-bit mode.

CCN7632 64-bit portability : possible difference in
results. Values > INT_MAX would be
truncated in 32-bit mode but not in
64-bit mode.

CCN7633 64-bit portability : possible difference in
results. Values > UINT_MAX would be
truncated in 32-bit mode but not in
64-bit mode.

CCN7634 64-bit portability : possible difference in
results if value is negative.

CCN7635 ″%1$s″ is not used in function ″%2$s″.

CCN7636 Global variable ″%1$s″ is not used.

Where: The global variable.

Explanation: A global variable was declared but not
used.

User Response: Remove the variable.

CCN7637 Null statement.

Explanation: This C++ statement has no effect.

User Response: Remove the statement.

CCN7638 The condition evaluates to a constant
value.

Explanation: An expression in a condition will not
change during execution.

User Response: Remove the condition.

CCN7639 Precision will be lost in assignment to
bit-field ″%1$s″

Where: The name of the bit-field.

Explanation: The size of the value assigned to the
bit-field is too large.

User Response: Increase the size of the bit-field or
reduce the value assigned.

CCN7640 The statement is unreachable

Explanation: Statements that are unreachable are
never executed.

User Response: Remove unreachable statements.

CCN7641 Auto compiler temporary of type
″%1$s″ has been generated.

Where: The type of the temporary variable.

Explanation: A temporary variable was generated by
the compiler to hold an intermediate result.

User Response: Modify expression to remove the
need for the compiler generated temporary.

CCN5001 A typedef must not have an initializer.

Explanation: A typedef represents a type, and a type
must not have an initializer.

User Response: Remove the initializer.

CCN5002 A typedef must not be specified on a
function.

Explanation: A typedef represents a type and must
not be specified on a function definition.

User Response: Remove the typedef keyword.

CCN5003 A destructor must be a class member.

Explanation: A destructor is a special member
function that cannot be declared outside a class
declaration.

User Response: Remove the destructor declaration or

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 101

move it inside the class declaration.

CCN5004 A conversion operator must be a class
member.

Explanation: A conversion operator is a special
member function that converts an object of the class
type to an object of the conversion type.

User Response: Move the conversion operator
declaration inside the class from which you want to
convert.

CCN5005 ″%1$s″ must have ″C″ linkage.

Where: ″%1$s″ is the string representing the main
function.

Explanation: The main function ″%1$s″ cannot be
specified with any linkage type other than extern ″C″.

User Response: Remove the linkage specification or
change it to extern ″C″.

CCN5006 The function declaration must not have
a body.

Explanation: A declaration of a function in a lexical
scope can only declare a function and must not be a
definition.

User Response: Remove the function body from the
declaration.

CCN5007 A bit-field is not allowed here.

Explanation: Bit-fields can only be declared as
members of classes.

User Response: Move the declaration into a member
list.

CCN5008 An initializer is not allowed here.

Explanation: A function declaration cannot have an
initializer.

User Response: Remove the initializer.

CCN5009 A union must not have base classes.

Explanation: Only a struct or a class can have a base
class.

User Response: Change the union to a class or
struct.

CCN5010 A name must not be used more than
once within a template parameter list.

Explanation: Duplicated template parameter names
are not allowed.

User Response: Change the name of one of the
template parameters.

CCN5011 ″%1$s″ is not a namespace.

Where: ″%1$s″ is the name used in the source.

Explanation: Only namespaces can be used in using
directives, but the entity named is not a namespace.

User Response: Remove the using directive or
change the name to be that of a namespace.

CCN5012 A using declaration for a member is
allowed only in a class or struct.

Explanation: The using declaration is in a union, but
using declarations are only allowed in classes and
structs.

User Response: Remove the using declaration.

CCN5013 ″%1$s″ is not a destructor.

Where: ″%1$s″ is the name in error.

Explanation: The name following the ″x″ must denote
a destructor when it is used in a member list, but the
name specified is not a destructor.

User Response: Change the name to be a destructor.

CCN5014 The literal type is unknown.

Explanation: The type of literal specified is not
recognised.

User Response: Change the literal to a recognised
type.

CCN5015 A constant expression is expected.

Explanation: A constant expression can only be used
in this context.

User Response: Change the expression to be a
constant expression.

CCN5016 The expression must be an integral
constant expression.

Explanation: Only a constant expression can be used
in this context, but a non-constant expression is
specified.

User Response: Change the expression to be a
constant expression.

CCN5017 A class or struct declaration must have
a class name, a declarator, or both.

Explanation: Anonymous classes and structs are
extensions to the language and may result in code that
is not portable to other compilers.

102 z/OS V1R2.0 C/C++ Messages

User Response: Name the class or add a declarator
list.

CCN5018 An enumeration must not be a
template.

Explanation: A template can only be a class, struct, or
function.

User Response: Remove the template keyword and
template arguments, or nest the enumerator within a
template.

CCN5019 A typedef declaration must not be a
template.

Explanation: A template can only be a class, struct, or
function.

User Response: Remove the template keyword and
template arguments, or nest the typedef within a
template.

CCN5020 A bit-field must not have a ″%1$s″
specifier.

Where: ″%1$s″ is the specifier that is not valid for a
bit-field.

Explanation: A bit-field should have integral or
enumeration type, and it should not be static.

User Response: Remove the incorrect specifier from
the bit-field or use an array rather than a bit-field.

CCN5021 The named class is not defined.

Explanation: The class named in the elaboration is
qualified but does not exist.

User Response: Change the name to refer to a
declared class.

CCN5022 The named class is not a class name.

Explanation: The name specified in the elaboration is
not a class or struct.

User Response: Change the name to be a class or
struct, or remove the elaboration.

CCN5023 The named struct is not defined.

Explanation: The struct named in the elaboration is
qualified but does not exist.

User Response: Change the name to refer to a
declared struct.

CCN5024 The named struct is not a struct name.

Explanation: The name specified in the elaboration is
not a class or struct.

User Response: Change the name to be a class or
struct.

CCN5025 The named union is not defined.

Explanation: The union named in the elaboration is
qualified but does not exist.

User Response: Change the name to refer to a
declared union.

CCN5026 The named union is not a union name.

Explanation: The name specified in the elaboration is
not a union.

User Response: Change the name to be a union.

CCN5027 A function template must not be a
qualifier.

Explanation: Qualifiers can only be namespaces or
classes.

User Response: Correct the qualifier name or remove
it.

CCN5028 A qualified name is not allowed in the
definition of ″%1$s″.

Where: ″%1$s″ is the name in error.

Explanation: A name specified as a parameter, in a
enumeration definition, or as an enumerator must not be
a qualified name.

User Response: Remove the qualifiers from the
name.

CCN5029 The named enumeration is not defined.

Explanation: Either the enumeration named in the
elaboration is not defined or a forward declaration of an
incorrect enumeration is being attempted.

User Response: Change the name to be a defined
enumeration or define the enumeration.

CCN5030 The named enumeration is not an
enumeration name.

Explanation: The name specified in the elaboration is
not an enumeration.

User Response: Change the name to be an
enumeration.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 103

CCN5031 A function template must not be the
class referred to by a
pointer-to-member.

Explanation: Only classes can form
pointer-to-members.

User Response: Correct the class or remove the
pointer-to-member.

CCN5032 The destructor name is not valid.

Explanation: A destructor name cannot be a qualifier.

User Response: Change the name to be a destructor.

CCN5033 A typedef declaration must declare a
name.

Explanation: A typedef declaration declares a type but
no name is specified for the declaration.

User Response: Add a name to the typedef
declaration.

CCN5034 This message is no longer used.

CCN5035 A simple namespace name is
expected.

Explanation: The name specified in a namespace
declaration or a namespace alias cannot be qualified.

User Response: Remove the qualifiers from the
name.

CCN5036 A namespace name is expected.

Explanation: The name specified in the namespace
alias declaration must refer to a namespace.

User Response: Change the name to be a
namespace name.

CCN5037 A qualified name is expected in a
using declaration.

Explanation: An unqualified name has been specified
in a using declaration. A using declaration must
nominate a member of a namespace or class.

User Response: Change the name to be a qualified
name.

CCN5038 The name ″%1$s″ is not a type.

Where: ″%1$s″ is the name in error.

Explanation: The name is elaborated with ″typename″
but the name specified in the template instantiation is
not a type.

User Response: Change the name to refer to a type
in the instantiation.

CCN5039 A label must be a simple identifier.

Explanation: The label specified was a qualified
name, but only unqualified names can be used for
labels.

User Response: Remove the qualifiers from the label.

CCN5040 The text ″%1$s″ is unexpected. ″%2$s″
may be undeclared or ambiguous.

Where: ″%1$s″ is the symbol causing the syntax error.
″%2$s″ is the name that may be causing the error if it is
expected to be a type.

Explanation: There is a syntax error in the
declaration. It may be that a name that is expected to
be a type is unknown or ambiguous.

User Response: Remove the offending symbol or
ensure that the name used as a type name is actually a
type.

CCN5041 A pointer-to-member must not be
specified because ″%1$s″ is not a
class.

Where: ″%1$s″ is the erroneous class type.

Explanation: The final qualifier in a pointer-to-member
must be a class.

User Response: Change the final qualifier to be a
class.

CCN5042 ″auto″ must be used only in a lexical
block or for parameters.

Explanation: The keyword ″auto″ must be used only
in a function body or for function parameters.

User Response: Remove the ″auto″ specifier.

CCN5043 ″register″ must be used only in a
lexical block or for parameters.

Explanation: The keyword ″register″ must be used
only in a function body or for function parameters.

User Response: Remove the ″register″ specifier.

CCN5044 Only function declarations can have
default arguments.

Explanation: A default initializer has been specified in
the parameter list of a function but the function is not
being declared.

User Response: Remove the default initializers.

104 z/OS V1R2.0 C/C++ Messages

CCN5045 The type of a conversion constructor
must not contain the specifier ″%1$s″.

Where: ″%1$s″ is the invalid specifier.

Explanation: The first parameter of a conversion
constructor must not use the specifier ″%1$s″.

User Response: Remove the specifier.

CCN5046 The attributes ″%1$s″ must not be
specified for a parameter.

Where: ″%1$s″ is the invalid specifier.

Explanation: It is not valid to specify the attribute
″%1$s″ for a function paarameter or template
parameter.

User Response: Remove the specifier.

CCN5047 A template class declaration or
definition must have a class name.

Explanation: Anonymous class templates are not
allowed.

User Response: Add a name.

CCN5048 A name is expected in the template
parameter.

Explanation: The template parameter must have a
name.

User Response: Add a name for the template
parameter.

CCN5049 A template function must not be
explicitly specialized as a class.

Explanation: A template function can only be
specialized as a function.

User Response: Correct the specialization or the
template.

CCN5050 The syntax is not valid.

Explanation: The compiler does not recognize the
syntax used. There may be a typing error.

User Response: Fix the syntax.

CCN5051 A template parameter must be a simple
identifier.

Explanation: A template parameter is a type
parameter or a parameter declaration.

User Response: Correct the template parameter
name.

CCN5052 ″typedef″ must not appear with a
storage class specifier.

Explanation: It is not valid to have specifiers in the
auto, register, static, extern, or mutable declaration of a
typedef.

User Response: Remove the typedef or the storage
class specifier.

CCN5053 The declaration of a class member
within the class definition must not be
qualified.

Explanation: A class member that is declared in the
member list of a class must not be a qualified name.

User Response: Remove the qualifier.

CCN5054 A class or struct declaration must have
a tag, a declarator, or both.

Explanation: Anonymous classes and structs are
extensions to the language, and the option allowing
them is turned off.

User Response: Name the class, add a declarator list,
or use the appropriate language level option to allow
anonymous structs.

CCN5055 ″%1$s″ is specified more than once.

Where: ″%1$s″ is the extra specifier.

Explanation: The specifier ″%1$s″ is used in the
declaration more than once but the extra specifiers are
ignored.

User Response: Remove the extra specifiers.

CCN5056 A constructor must not be a pure
virtual function.

Explanation: Constructors cannot be virtual, but the
constructor has been specified as a pure virtual
function.

User Response: Remove the ″=0″ from the
constructor declaration.

CCN5057 The declaration specifier is missing.

Explanation: Implicit int types are no longer valid in
C++.

User Response: Add a complete type to the
declaration or use the appropriate language level option
to allow implicit int types.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 105

CCN5058 The declaration of a class member
within the class definition must not be
qualified.

Explanation: A class member that is declared in the
member list of a class must not be a qualified name.

User Response: Remove the qualifier.

CCN5059 The identifier ″%1$s″ appears where a
template identifier is expected.

Where: ″%1$s″ is the unexpected identifier.

Explanation: The compiler expects a template
identifier, and ″%1$s″ is not a template.

User Response: Correct the identifier or its use.

CCN5060 An internal parser error has occurred:
″%1$s″.

Where: ″%1$s″ is a description of the error.

Explanation: The parser has detected an
unrecoverable error.

User Response: Report the problem to your IBM C++
service representative.

CCN5061 This message is no longer used.

CCN5062 The incomplete class ″%1$s″ must not
be used as a qualifier.

Where: ″%1$s″ is the incomplete class.

Explanation: A class that is incomplete because it is
only declared or because of some error in the
declaration cannot be used as a qualifier.

User Response: Define the class.

CCN5063 The text ″%1$s″ is unexpected.

Where: ″%1$s″ is the first invalid token.

Explanation: A syntax error has occurred and the first
unexpected token is ″%1$s″.

User Response: Change or remove the offending text.

CCN5064 Syntax error: ″%1$s″ was expected but
″%2$s″ was found.

Where: ″%2$s″ is the invalid text. ″%1$s″ is expected
correct text.

Explanation: A syntax error has occurred and the first
unexpected token is ″%1$s″. The only valid token at
this point is ″%2$s″.

User Response: Change the incorrect token to the
expected one.

CCN5065 The qualifier ″%1$s″ is neither a class
nor a namespace.

Where: ″%1$s″ is the invalid qualifier.

Explanation: Only names representing classes and
namespaces can be used as qualifiers.

User Response: Change the qualifier to a class name
or namespace name.

CCN5066 A function must not be defined in this
scope.

Explanation: Function definitions are only allowed in
namespace scope or in a member list of a class.

User Response: Move the definition into an
appropriate scope.

CCN5067 A return type must not be specified for
″%1$s″.

Where: ″%1$s″ is the function that cannot have a
return type.

Explanation: Return types cannot be specified for
conversion functions.

User Response: Remove the return type.

CCN5068 No member except a constructor can
have the same name as its class,
struct, or union.

Explanation: An attempt was made to declare a
member of a class that has the same name as the class
itself.

User Response: Change the name of the member.
″constructor″ is an ISO-defined term.

CCN5069 The bit-field length must be greater
than, or equal to, zero.

Explanation: A bit-field length must not be a negative
number.

User Response: Change the bit-field length to zero or
a positive number.

CCN5070 The friend class declaration must use
the ″%1$s″ keyword in the friend
decalaraton of ″%2$s″.

Where: ″%1$s″ is the expected elaboration. ″%2$s″ is
the offending text.

Explanation: The language has changed. Now
declarations of friend classes must contain an
elaborated type specifier.

User Response: Add the elaboration of class, struct,
or union to the declaration.

106 z/OS V1R2.0 C/C++ Messages

CCN5071 A class or union must not be defined
in this context.

Explanation: An attempt was made to define a class
in a context where this is not valid.

User Response: Move the definition to an appropriate
context.

CCN5073 A template specialization must not be
declared here.

Explanation: An explicit specialization can only be
declared in namespace scope, either in the namespace
in which the primary template is declared or, for a
member template, in the namespace of which the
enclosing class is declared.

User Response: Remove the specialization or move it
to a valid location.

CCN5074 The ″%1$s″ specifier must not be
specified for a friend.

Where: ″%1$s″ is the invalid specifier.

Explanation: The ″%1$s″ specifier is not correct on a
friend declaration.

User Response: Remove the invalid specifier.

CCN5075 A static member function must not be
virtual.

Explanation: The virtual specifier must not be used on
a member function that is declared static.

User Response: Remove the virtual or static specifier.

CCN5076 The pure-specifier (= 0) is not valid for
a static member function.

Explanation: The pure-specifier must not be used on
a member function that is declared static.

User Response: Remove the pure-specifier or static
specifier.

CCN5077 The array bound is too large.

Explanation: The specified array bound is too large
for the system to handle.

User Response: Use a smaller array bound.

CCN5078 A template must not be defined here.

Explanation: A template can only be defined at
namespace or class scope.

User Response: Remove the template definition or
move it to a valid location.

CCN5079 The bit-field length is too large.

Explanation: The specified bit-field length is larger
than the system allows.

User Response: Use a smaller bit-field length.

CCN5080 Template specializations must be
prefixed with ″template<>″.

Explanation: Old-style template specializations are
accepted but are no longer compliant.

User Response: Add the ″template <>″ syntax.

CCN5081 The declaration ″%1$s″ is not a
template declaration.

Where: ″%1$s″ is the incorrect declaration.

Explanation: The compiler expects a template
declaration, and ″%1$s″ is not a template.

User Response: Change the declaration to be a
template.

CCN5082 This message is no longer used.

CCN5083 An explicit template specialization
must not be an untagged class.

Explanation: An identifier is required for this
declaration.

User Response: Supply the identifier of the template
that is being explicitly specialized.

CCN5084 An explicit template instantiation must
not be an untagged class.

Explanation: An identifier is required for this
declaration.

User Response: Supply the identifier of the template
that is being explicitly instantiated.

CCN5085 This message is no longer used.

CCN5086 The declaration of the template
parameters is missing for template
″%1$s″.

Where: ″%1$s″ is the incorrect template declaration.

Explanation: A template must have at least one
template parameter.

User Response: Correct the template parameters or
remove the invalid template declaration.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 107

CCN5087 The arguments of the template qualifier
do not match those of ″%1$s″.

Where: ″%1$s″ is the matching template declaration.

Explanation: The types and order of template
arguments must match the original template.

User Response: Correct the arguments in the
template qualifier.

CCN5088 An enumeration must not be defined in
this context.

Explanation: An attempt is being made to define an
enumeration in a context where it is not valid to define
an enumeration.

User Response: Move the definition to an appropriate
context.

CCN5089 Too many template prefixes are
specified for the declaration of ″%1$s″.

Where: ″%1$s″ is the incorrect declaration.

Explanation: The number of template scopes must
match the template nesting level of the declaration.

User Response: Remove some of the template
scopes.

CCN5090 Not enough template prefixes are
specified for the declaration of ″%1$s″.

Where: ″%1$s″ is the incorrect declaration.

Explanation: The number of template scopes must
match the template nesting level of the declaration.

User Response: Add the correct number of template
scopes.

CCN5091 A function explicit instantiation must
specify only ″template
instantiation-name″.

Explanation: You cannot provide a definition or use
the pure virtual specification on a function explicit
instantiation.

User Response: Correct the function explicit
instantiation.

CCN5092 An explicit instantiation must
instantiate a template function
definition.

Explanation: There must be a function body to
instantiate.

User Response: Define the template function or
remove the explicit instantiation.

CCN5093 A partial specialization of a function is
not allowed.

Explanation: Only class templates can be partially
specialized.

User Response: Remove the function partial
specialization.

CCN5094 The template parameter must not be
qualified.

Explanation: A template parameter defines the
parameter to be a type in the scope of the template and
therefore cannot be qualified.

User Response: Remove all qualifiers.

CCN5095 The friend function declaration ″%1$s″
will cause an error when the enclosing
template class is instantiated with
arguments that declare a friend
function that does not match an
existing definition. The function
declares only one function because it
is not a template but the function type
depends on one or more template
parameters.

Where: ″%1$s″ is the non-template friend declaration
that depends on template parameters.

Explanation: This friend function makes use of one or
more of the enclosing template’s parameters. Therefore
different instantiations of the template will create
different friend functions. If a created friend function
does not exist, the program will not link.

User Response: Change the friend declaration to a
template function (by adding explicit template
arguments) or ensure that all instantiations will match
an existing function.

CCN5096 No primary class template ″%1$s″ is
found for a partial specialization.

Where: ″%1$s″ is the incorrect class template partial
specialization.

Explanation: A primary class template must exist for a
partial specialization.

User Response: Declare the primary template or
remove the partial specialization.

CCN5097 This message is not implemented.

108 z/OS V1R2.0 C/C++ Messages

CCN5098 The partial specialization ″%1$s″ must
be declared in the same scope as the
primary template or in a namespace
scope that encloses the primary
template.

Where: ″%1$s″ is the incorrect class template partial
specialization.

Explanation: The primary template must be visible at
the point the partial specialization is made.

User Response: Move the partial specialization into a
correct scope.

CCN5099 The explicit specialization ″%1$s″ must
be made in the same scope as the
primary template.

Where: ″%1$s″ is the incorrect class template explicit
specialization.

Explanation: The primary template must be visible at
the point the explicit specialization is made.

User Response: Move the explicit specialization into a
correct scope.

CCN5100 The class qualifier ″%1$s″ contains a
circular reference back to ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the classes with
circular references.

Explanation: The two classes contain references to
each other that require each class to be defined before
the other.

User Response: Change one of the classes so that it
does not require the other class to be defined.

CCN5101 A typedef declaration must not contain
the specifier ″%1$s″.

Where: ″%1$s″ is the invalid specifier.

Explanation: A typedef defines another name to use
in place of the declared type. The indicated specifier is
not valid in this context.

User Response: Remove the specifier.

CCN5102 A declaration with a ″%1$s″ specifier
must contain a declarator ID.

Where: ″%1$s″ is the specifier in question.

Explanation: The type for the declaration contains a
specifier that requires an object to be declared.

User Response: Remove the specifier or declare an
object.

CCN5103 An anonymous union, struct or class
declared at namespace scope must be
declared static.

Explanation: Data members of an anonymous union,
struct, or class declared at namespace scope have
internal linkage so they must be declared static.

User Response: Add the static specifier to the union,
struct, or class.

CCN5104 The ″%1$s″ specifier must be applied
only to objects declared in a block or
to function parameters.

Where: ″%1$s″ is the specifier in question.

Explanation: The ″%1$s″ specifier has been used on
a declaration that is not in an appropriate scope.

User Response: Remove the specifier.

CCN5105 Functions declared within a block must
not be ″%1$s″.

Where: ″%1$s″ is the specifier in question.

Explanation: A function declared in a lexical block
scope cannot have the ″%1$s″ specifier.

User Response: Remove the specifier.

CCN5106 The ″static″ specifier must be applied
only to objects, functions, and
anonymous unions, structs and
classes.

Explanation: The ″static″ specifier has been applied
to an inappropriate object.

User Response: Remove the specifier.

CCN5107 The ″extern″ specifier must be applied
only to objects and functions.

Explanation: The ″extern″ specifier cannot be applied
to an out-of-line member variable or a type.

User Response: Remove the ″extern″ specifier.

CCN5108 Class members must not be declared
″extern″.

Explanation: The ″extern″ specifier cannot be applied
to an out-of-line member variable.

User Response: Remove the ″extern″ specifier.

CCN5109 The ″mutable″ specifier must be
applied only to class data members.

Explanation: The ″mutable″ specifier is being applied
to a declaration that is not a member of a class.

User Response: Remove the ″mutable″ specifier.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 109

CCN5110 The ″inline″ specifier must be applied
only to function declarations.

Explanation: The ″inline″ specifier is being applied to
something other than a function.

User Response: Remove the ″inline″ specifier.

CCN5111 The ″explicit″ specifier must be applied
only to declarations of constructors
within a class declaration.

Explanation: The ″explicit″ specifier is being applied
to something other than a constructor that is being
declared in-line in the class.

User Response: Remove the ″explicit″ specifier.

CCN5112 The ″virtual″ specifier must be applied
only to declarations of non-static class
member functions within a class
declaration.

Explanation: An attempt is being made to apply the
″virtual″ specifier inappropriately.

User Response: Remove the ″virtual″ specifier from
member functions using classes that are not static, or
do not use it outside of a class.

CCN5113 The ″static″ specifier must be applied
only to class member declarations
within a class declaration.

Explanation: An attempt is being made to apply the
″static″ specifier inappropriately.

User Response: Remove the ″static″ specifier.

CCN5114 A parameter name must not be the
same as another parameter of this
function.

Explanation: All parameter names for a given function
must be unique.

User Response: Give the parameter a unique name.

CCN5115 A member variable must have the
″%1$s″ attribute to be initialized in the
definition of a class.

Where: ″%1$s″ is the missing specifier.

Explanation: Only constants that are also static may
be initialized in the definition of a class.

User Response: Remove the initializer or ensure that
the member is specified as both static and const.

CCN5116 A template declaration must declare a
function, a class, a static member of a
template class, or a template member
of a class.

Explanation: An attempt is being made to create an
invalid template.

User Response: Change the declaration so it is not a
template, or correct the template declaration.

CCN5117 Linkage specification must be at
namespace scope.

Explanation: Linkage specifications are only valid for
declarations at namespace scope.

User Response: Remove the linkage specification.

CCN5118 A class name is expected in the base
specifier.

Explanation: The name given in the base specifier is
not a class.

User Response: Remove the base specifier or
change it to refer to a class.

CCN5119 A friend template must not be declared
in a local class.

Explanation: A friend of a class defined in a lexical
block must not be a template.

User Response: Move the class to namespace scope
or remove the friend declaration.

CCN5120 The out-of-line member definition
″%1$s″ of an explicit specialization
should not use a template prefix.

Where: ″%1$s″ is the identifier of the out-of-line
member.

Explanation: Out-of-line members of explicit
specializations are defined in the same manner as
members of non-template classes.

User Response: Remove the template prefix.

CCN5121 A template cannot have ″C″ linkage.

Explanation: Any linkage other than C++ is defined by
implementation. The behavior with any linkage other
than C++ is implementation-defined.

User Response: Remove the ″C″ linkage.

110 z/OS V1R2.0 C/C++ Messages

CCN5122 The duplicate attribute ″%1$s″ is
ignored.

Where: ″%1$s″ is the duplicate attribute.

Explanation: The attribute ″%1$s″ has been specified
more than once.

User Response: Remove the extra attributes.

CCN5123 The operator symbol is not recognized.

Explanation: The operator symbol specified is not
valid.

User Response: Change the operator symbol to a
valid symbol.

CCN5124 The text ″typename″ is unexpected
because it cannot be used to modify a
base specifier.

Explanation: A name specified in a base specifier list
must be a type so typename is not required for template
dependent names in a base specifier list.

User Response: Remove the ″typename″ elaboration
from the name.

CCN5125 The duplicate specifier ″%1$s″ is
ignored.

Where: ″%1$s″ is the duplicate specifier.

Explanation: The specifier ″%1$s″ has been specified
more than once.

User Response: Remove the extra specifiers.

CCN5126 A template defined in an unnamed
namespace must not be exported.

Explanation: Exported namespace scope template
definitions must be in a named namespace.

User Response: Don’t export the template, give the
namespace a name, or move the template to another
namespace scope.

CCN5127 The text ″typename″ is unexpected
because it cannot be used to modify a
name in a constructor initializer list.

Explanation: A name specified in a constructor
initializer list must be a member or a base class so
typename is not required for template dependent names
in a constructor initializer list.

User Response: Remove the ″typename″ elaboration
from the name.

CCN5128 ″%1$s″ is an ambiguous qualifier.

Where: ″%1$s″ is the ambiguous qualifier.

Explanation: The qualifier ″%1$s″ is ambiguous since
there is more than one name to which it resolves.

User Response: Add extra qualification to remove the
ambiguity.

CCN5129 The qualifier ″%1$s″ is not defined in
the current scope.

Where: ″%1$s″ is the unknown qualifier.

Explanation: The name being used as a qualifier has
not been declared in a visible scope.

User Response: Change the qualifier to a name that
has been declared.

CCN5130 ″%1$s″ is not declared.

Where: ″%1$s″ is the unknown name.

Explanation: The name ″%1$s″ is not declared in any
visible scope.

User Response: Change the name to one that has
been declared.

CCN5131 Only one calling convention can be
specified here.

Explanation: More than one calling convention is
being specified.

User Response: Remove the extra calling
conventions.

CCN5132 The expected token ″%1$s″ was not
found.

Where: ″%1$s″ is the expected token.

Explanation: The coompiler expected ″%1$s″, and it
was not there.

User Response: Insert the expected token, or check
tokens requiring matched pairs.

CCN5133 The attributes ″%1$s″ are not allowed.

Where: ″%1$s″ is the invalid attributes.

Explanation: The specifier or qualifier ″%1$s″ is
incorrect on this type of declaration.

User Response: Remove the invalid attributes.

CCN5134 A function return type must not be a
type definition. There may be a
missing ″;″ after a ″}″.

Explanation: An attempt has been made to define a
class in the return type of a function. This is usually

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 111

caused by a missing ″;″ after the class definition.

User Response: Change the return type or ensure
that a previous class definition has a ″;″ at the end of it.

CCN5135 The array bound cannot be zero.

Explanation: An array cannot be declared with zero
elements.

User Response: Change the array bound.

CCN5136 A return type must not be specified for
a constructor.

Explanation: Constructors cannot have return types. A
member or member function that has the same name
as the class is considered a constructor, even if it is
ill-formed.

User Response: Remove the return type or rename
the member.

CCN5137 The attribute ″%1$s″ is not allowed for
a constructor.

Where: ″%1$s″ is the invalid attribute.

Explanation: A declaration of a constructor cannot
have the ″%1$s″ attribute.

User Response: Remove the attribute.

CCN5138 The undefined template ″%1$s″ must
not be explicitly instantiated.

Where: ″%1$s″ is the identifier of the undefined
template.

Explanation: An explicit instantiation requires a
definition.

User Response: Define the template or remove the
explicit instantiation.

CCN5139 In the context of the forward
declaration, the name ″%1$s″ must not
be qualified.

Where: ″%1$s″ is the qualified name.

Explanation: A qualified name cannot be used in a
forward declaration for a class.

User Response: Remove the qualifiers from the
name.

CCN5140 The text ″%1$s″ is unexpected. ″%2$s″
may be undeclared, ambiguous, or
may require ″typename″ qualification.

Where: ″%1$s″ is the symbol causing the syntax error.
″%2$s″ is the name that may be causing the error if it is
expected to be a type.

Explanation: There is a syntax error in the
declaration. A name may be expected to be a type that
is unknown or ambiguous, or the type specified may be
template-dependent and require typename qualification.

User Response: Remove the offending symbol,
ensure that the name used as a type name is actually a
type, or add typename qualification to the type.

CCN5141 The declaration ″%1$s″ must not
become a function because of a
template argument.

Where: ″%1$s″ is the declaration that is acquiring
function type.

Explanation: Only a declaration that uses the
syntactic form of a function can be a function.

User Response: Change the template argument, or
change the declaration.

CCN5142 cv-qualifiers must not be added to a
typedef of function type.

Explanation: The const and volatile qualifiers cannot
be specified on a type where a typedef that refers to a
function is used.

User Response: Remove the const or volatile
specifiers.

CCN5143 The qualifier ″%1$s″ is not a class.

Where: ″%1$s″ is the invalid qualifier.

Explanation: A typedef that does not refer to a class
is being used as a qualifier.

User Response: Change the qualifier to refer to a
class.

CCN5144 A non-local declaration is not allowed
in a function body.

Explanation: Only local declarations are allowed in a
function body.

User Response: Change the declaration to be a local
declaration, or move it to the correct scope.

CCN5145 The explicit instantiation ″%1$s″ of the
class template does not match the
primary template.

Where: ″%1$s″ is the explicit instantiation.

Explanation: If the primary template is a union, the
explicit instantiation must be a union as well. If the
primary template is a class, the explicit instantiation
must be a class.

User Response: Make sure that the class keys match.

112 z/OS V1R2.0 C/C++ Messages

CCN5146 The keyword ″friend″ is not allowed for
a non-function.

Explanation: The ″friend″ keyword can only be used
to nominate classes or functions as friends.

User Response: Remove the ″friend″ keyword.

CCN5147 Friend declarations are allowed only in
classes and structs.

Explanation: Friends allow access to protected and
private members. Because only classes and structs
have members, only classes and structs can have friend
declarations.

User Response: Remove the friend declaration.

CCN5148 A friend declaration must not be an
explicit specialization.

Explanation: An explicit specialization declaration
must not be a friend declaration.

User Response: Remove the friend or change it so it
is not an explicit specialization.

CCN5149 A template defined in an unnamed
namespace must not be exported.

Explanation: Exported namespace scope template
definitions must be in a named namespace.

User Response: Do not export the template, give the
namespace a name, or move the template to another
namespace scope.

CCN5150 A using declaration must not specify a
template-id.

Explanation: You cannot specify a template ID in a
using declaration.

User Response: Remove or change the using
declaration.

CCN5151 A friend function that is qualified must
not be defined.

Explanation: Only friend functions without qualification
can be defined in the friend declaration.

User Response: Define the friend function in a
different declaration.

CCN5152 A template dependent name that is a
type must be qualified with
″typename″.

Explanation: The keyword ″typename″ is used to
identify a name in a template as a type.

User Response: Add the keyword typename.

CCN5153 The friend declaration is not a class or
function.

Explanation: The friend declaration must only
nominate a function or class for friendship.

User Response: Remove the friend specifier.

CCN5154 A class, struct, or union must not be
defined in a friend declaration.

Explanation: Only functions can be defined in friend
declarations.

User Response: Define the friend in another
declaration.

CCN5155 A template parameter must not be
used in an elaborated type specifier.

Explanation: If the identifier in an elaborated type
specifier resolves to a typedef or a template type
parameter, it is ill-formed.

User Response: Remove the construct.

CCN5156 ″%1$s″ keyword is not supported on
this platform. The keyword is ignored.

Where: ″%1$s″ is the ignored keyword.

Explanation: The keyword has no meaning for the
current platform and is ignored.

User Response: Remove the keyword for this
platform.

CCN5157 The text ″>″ is unexpected. It may be
that this token was intended as a
template argument list terminator but
the name is not known to be a
template.

Explanation: An unexpected ″>″ was seen. This
situation can arise when a template name is misspelled
and is thus interpreted as a variable name rather than a
template.

User Response: Check that previous template names
are correct.

CCN5158 The function has a syntax error.

Explanation: The compiler does not recognize the
syntax you used. There may be a typing error in this
function.

User Response: Fix the syntax error.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 113

CCN5159 A storage class cannot be specified on
a declaration directly contained in a
linkage specification.

Explanation: This declaration is contained within a
linkage specification and therefore cannot have a
storage class.

User Response: Remove the storage class.

CCN5160 ″__thread″ is not allowed on a class.

Explanation: The ″__thread″ specifier cannot be used
on a declaration for a class.

User Response: Remove the ″__thread″ specifier.

CCN5161 ″%1$s″ is already specified.

Where: ″%1$s″ is the name that has been already
specified.

Explanation: The name has already been specified.

User Response: Remove the duplicate name.

CCN5162 ″__thread″ is not allowed on an
enumeration.

Explanation: The ″__thread″ specifier cannot be used
in a declaration for an enumeration.

User Response: Remove the ″__thread″ specifier.

CCN5163 The array bound must not be negative.

Explanation: An array cannot be declared with a
negative number of elements.

User Response: Change the array bound.

CCN5164 The operator ″%1$s″ is ambiguous.

Where: ″%1$s″ is the ambiguous operator.

Explanation: The specified operator is ambiguous
because it can resolve to more than one declaration.

User Response: Add more qualifiers to resolve the
ambiguity.

CCN5165 Only a positive integral constant which
is a power of 2 is allowed in the
__align specifier.

Explanation: The __align specifier must have a power
of two since these are the only boundaries that align
with memory.

User Response: Change the integral constant to be a
power of two.

CCN5166 The __align specifier can only be
applied to the definition of an
aggregate tag or the declaration of a
global or static variable.

Explanation: The __align specifier has been applied
to an inappropriate type of declaration.

User Response: Remove the __align specifier.

CCN5167 This message is no longer used.

CCN5170 The class name ″%1$s″ must already
be declared.

Where: ″%1$s″ is the invalid name.

Explanation: A declaration must exist in order to use
this class name.

User Response: Declare the class name.

CCN5173 ″{″ is expected.

Explanation: An opening brace is expected for the
function or member list.

User Response: Add appropriate bracing.

CCN5178 An enumeration must not contain both
a negative value and an unsigned
value greater than LONG_MAX.

Explanation: An enumeration cannot contain both
negative values and unsigned values greater than
LONG_MAX because they cannot both be represented
by the same type.

User Response: Remove the invalid enumerators.

CCN5179 The enumeration value is too large.

Explanation: The enumeration value cannot be
represented because it is too large for the underlying
type.

User Response: Remove the invalid enumeration
value.

CCN5182 Enumerator expected.

Explanation: A valid enumerator for an enumerator is
required in an enum declaration.

User Response: Fix the syntax error by adding an
enumerator.

CCN5184 The ″{″ has no matching ″}″.

Explanation: There are not enough ″}″s in the source
so some construct is not complete.

User Response: Add the appropriate number of ″}″s.

114 z/OS V1R2.0 C/C++ Messages

CCN5185 The ″%1$s″ linkage specifier must only
be applied to a function or a pointer to
a function.

Where: ″%1$s″ is the linkage specifier from the user’s
source code.

Explanation: The ″%1$s″ linkage specifier is being
applied to something other than a function or pointer to
function.

User Response: Remove the linkage specifier.

CCN5186 A ″;″ or ″,″ is expected following the
initializer.

Explanation: An initialiser was incomplete.

User Response: Add ″;″ after the initialiser.

CCN5187 The ″(″ has no matching ″)″.

Explanation: There is an imbalance of left and right
parentheses.

User Response: Ensure that each left parenthesis has
a matching right parenthesis.

CCN5188 A ″)″ or ″,″ is expected following the
initializer.

Explanation: The initializer is not properly formed.

User Response: Add the appropriate ending token to
complete in the initializer.

CCN5189 Only static member variables of
templates can be instantiated.

Explanation: A non-static data member of a template
cannot be explicitly instantiated.

User Response: Remove the explicit instantiation, or
explicitly instantiate the class.

CCN5190 A ″{″ must follow a constructor
initializer.

Explanation: A body for the constructor must follow
the constructor initializer list.

User Response: Add a body for the constructor.

CCN5191 A handler must be a compound
statement.

Explanation: A catch handler must be a lexical block
enclosed by ″{″ and ″}″.

User Response: Add a well-formed catch handler.

CCN5192 A ″{″ must follow a base specifier list.

Explanation: Only class definitions can have a base
specifier list. All class definitions must include a member
list.

User Response: Add a member list to the class
definition.

CCN5193 A typedef name cannot be used in this
context.

Explanation: Only actual class names, and not
typedef names, can be used in elaborations.

User Response: Replace the typedef name with the
class it represents.

CCN5194 The ″%1$s″ declaration must declare a
function.

Where: ″%1$s″ is the declaration from the user’s
source code.

Explanation: An operator or conversion function name
in a declaration can only be used in a function
declaration.

User Response: Change the name in the declaration.

CCN5195 The initializer has a syntax error.

Explanation: The initializer is not well-formed.

User Response: Correct the syntax error in the
initializer.

CCN5196 A friend declaration must not declare a
partial specialization.

Explanation: The partial specialization of a template
class cannot be declared in a friend declaration.

User Response: Remove the friend declaration or
change it from a partial specialization.

CCN5197 The ″asm″ keyword declaration is not
supported.

Explanation: Inserting inline assembler instructions
using the ″asm″ declaration is not supported. It is
ignored.

User Response: Remove the ″asm″ declaration.

CCN5198 The omitted keyword ″private″ is
assumed for base class ″%1$s″.

Where: ″%1$s″ is the name of the base class which is
assumed to be private.

Explanation: The access to the base class is not
specified and is assume to be private.

User Response: Add either ″public,″ ″protected,″ or

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 115

″private″ to the base class specifier.

CCN5199 An explicit instantiation must specify
only a template class instantiation
name.

Explanation: An explicit instantiation cannot contain a
class definition. It must have a template argument list.

User Response: Correct or remove the explicit
instantiation.

CCN5200 The ″%1$s″ operator is not allowed
between ″%2$s″ and ″%3$s″.

Where: ″%1$s″ is the operator. ″%2$s″ and ″%3$s″
are the operands.

Explanation: The ″%1$s″ operator cannot be used
between the two specified expressions because the
operator is not defined for the types of the expression.

User Response: Change the operator or one or both
of the operands.

CCN5201 The ″%1$s″ operator is not allowed for
type ″%2$s″.

Where: ″%1$s″ is the operator. ″%2$s″ is the
operand.

Explanation: The ″%1$s″ operator cannot be used
with the specified expression because the operator is
not defined for the type of the expression.

User Response: Change the operator or the operand.

CCN5202 An expression of type ″%1$s″ is not
allowed on the left side of
″%2$s%3$s″.

Where: ″%2$s%3$s″ are the operands. ″%1$s″ is the
operator.

Explanation: The type of the expression on the left
side of the operator is not correct.

User Response: Change the left operand.

CCN5203 The member expression ″.%1$s″ or
″->%1$s″ must be used with the
function call operator ().

Where: where ″%1$s″ is the name of the member
function.

Explanation: The member expression refers to a
member function so it must be used with the function
call operator.

User Response: Add the function call operator with
the parameters required for the member function call.

CCN5204 An expression of type ″%1$s″ must not
be followed by the function call
operator ().

Where: where ″%1$s″ is the type of the name
referenced with the function call operator ().

Explanation: Only functions can be followed by a
function call operator ().

User Response: Remove the function call operator ().

CCN5205 An expression of type ″%1$s″ is not
allowed where an rvalue is expected.

Where: ″%1$s″ is the type of the expression.

Explanation: The expression cannot be used in this
situation since it has void type.

User Response: Change the expression.

CCN5206 An rvalue of type ″%1$s″ cannot be
converted to an rvalue of type bool.

Where: ″%1$s″ is the type of expression.

Explanation: There is no valid conversion sequence
for converting the expression to an expression of type
bool.

User Response: Change the expression or provide a
conversion sequence.

CCN5207 No common type found for operands
with type ″%1$s″ and ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the types of the
operands.

Explanation: There is no standard conversion
sequence between the two types.

User Response: Define a conversion sequence
between the two types.

CCN5208 The operand for ″%1$s″ is of type
″%2$s″ but a pointer-to-member type is
required.

Where: ″%1$s″ is the operator. ″%2$s″ is the
unexpected type.

Explanation: The operator is expecting a
pointer-to-member as an operand but the operand is of
type ″%2$s″.

User Response: Change the operand to be a
pointer-to-member.

116 z/OS V1R2.0 C/C++ Messages

CCN5209 The result of this pointer-to-member
operator must be the operand of the
function call operator ().

Explanation: This expression is expected to be a
function call.

User Response: Change the expression to be a
function call.

CCN5210 ″%1$s″ is not a base class of ″%2$s″.

Where: ″%1$s″ is the problematic class. ″%2$s″ is the
expected derived class.

Explanation: The class specified is not a base class,
so the devirtualisation or destructor name is not valid.

User Response: Change the name to refer to a base
class.

CCN5211 The array operator must have one
operand that is a pointer to a complete
type and an operand that is of integral
type.

Explanation: Either the variable is not an array or
pointer or the index is not an integral type.

User Response: Change the variable to be an array
or pointer or the index to be an integer.

CCN5212 The operand of the ″%1$s″ operator
must be an lvalue.

Where: ″%1$s″ is the operator.

Explanation: The operator expects an object as its
operand.

User Response: Change the operand to be an object.

CCN5214 The conditional expression of a switch
statement must be of integral or
enumeration type.

Explanation: Integral types are all sizes of int and
char as well as enumerations. A switch statement
condition must have an integral type or something that
can be converted to an integral type.

User Response: Modify the switch condition or use an
if statement instead of a switch.

CCN5215 The wrong number of arguments have
been specified for ″%1$s″.

Where: Where ″%1$s″ is the name of the function
being called.

Explanation: When a function is called, the arguments
are matched against the actual parameters in the
function declaration. There must be the same number of
arguments in the call as there are parameters in the

declaration unless there are default arguments
specified.

User Response: Verify the function declaration and
provide the correct number of arguments in your call.

CCN5216 An expression of type ″%1$s″ cannot
be converted to type ″%2$s″.

Where: ″%1$s″ is the type being converted from.
″%2$s″ is the type being converted to.

Explanation: To convert between types, the compiler
uses a set of specific rules defined in the C++
language. In this case the compiler was unable to
convert between the specified types.

User Response: Modify the expression so that the
conversion can be made, or define a conversion
function to do the conversion.

CCN5217 ″%1$s″ is not a member of ″%2$s″.

Where: ″%1$s″ is the name of the member you are
attempting to access. ″%2$s″ is the name of the class.

Explanation: When using the . or -> operators to
access a class member, the name after the operator
must be a member of the class.

User Response: Verify with the class declaration to
see that you are accessing a member.

CCN5218 The call does not match any parameter
list for ″%1$s″.

Where: ″%1$s″ is the name of the function.

Explanation: The compiler will attempt to match the
arguments in your function call against all functions
defined with the name you are calling. It cannot match
the number and types or arguments in your call with
one of the declarations for the function.

User Response: Check the declaration of the function
you want to call and modify your arguments so that they
match.

CCN5219 The call to ″%1$s″ has no best match.

Where: ″%1$s″ is the name of the function being
called.

Explanation: When a function is called, the compiler
will check all the function declarations it has for the
name you are calling. In this case, the compiler was
unable to determine which one to call because there is
not a single version that is a best match. The criteria for
a best match is based on the types of the parameters
and the conversions required to match them with the
arguments in your call.

User Response: Check the declarations for functions
with that name and modify your arguments so that the
correct one can be matched.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 117

CCN5220 The address of a bit-field cannot be
taken.

Explanation: C++ language standards indicate that
the & operator cannot be applied to bit-fields.

User Response: Change the bit-field to an array or
remove the line which attempts to take the address of
the bit-field.

CCN5221 The case expression must be an
integral constant expression.

Explanation: Integral types are all sizes of int and
char as well as enumerations. A case expression must
be an integral constant expression which is an
expression which results in an integral type.

User Response: Modify the expression so that it is an
integral constant expression, or change the switch
statement to an if statement.

CCN5222 The function must not have a return
value.

Explanation: The function was declared with a return
type of void, so it cannot have a return value specified.

User Response: Remove the return value, or modify
the function declaration to return the required type.

CCN5223 A return value of type ″%1$s″ is
expected.

Where: ″%1$s″ is the type of the expected return
value.

Explanation: The function was declared with a
specific return type, so it should return a value of that
type.

User Response: Modify the return type to match the
declaration, or modify the declaration.

CCN5224 The type name ″%1$s″ is used where a
variable or function name is expected.

Where: ″%1$s″ is the type name.

Explanation: The expression was expected to be an
object or function name but a type name was found.

User Response: Replace the type with an object or
function name.

CCN5225 The initializer list has too many
initializers.

Explanation: An initializer list should not have more
initializers than the number of elements to initialize.

User Response: Remove some initializers or increase
the number of elements to initialize.

CCN5226 The initializer must not be enclosed in
braces.

Explanation: Only initializers for classes and arrays
can have braces ″{″ and ″}″.

User Response: Remove the braces.

CCN5227 ″%1$s″ cannot be initialized with an
initializer list.

Where: ″%1$s″ is the type that cannot be initialized
with an initializer list.

Explanation: The specified type cannot be initialized
with an initializer list in braces ″{″ and ″}″.

User Response: Verify that the type is one that may
be used with an initializer list. References cannot be
initialized with an initializer list.

CCN5228 A ″&″ must precede the qualified
member ″%1$s″ to form an expression
with type pointer-to-member.

Where: ″%1$s″ is the member.

Explanation: A non-static member of a class was
referred to with a qualified name, but no object is
specified.

User Response: Refer to an object.

CCN5229 The best viable function ″%1$s″ uses
an ambiguous conversion sequence.

Where: ″%1$s″ is the overloaded function.

Explanation: The overloaded function that has the
closest match requires a conversion where one of the
steps has more than one valid choice.

User Response: Provide a closer matching overload
for the function being called.

CCN5230 The overloaded function name is not
used in a valid context.

Explanation: It is not valid to use an overloaded
function here.

User Response: Use a non-overloaded function.

CCN5231 The array bound must be specified and
must be a positive integral constant
expression.

Explanation: Only the first array bound in a series of
array bounds can be omitted when declaring a
multi-dimensional array.

User Response: Add the missing array bounds.

118 z/OS V1R2.0 C/C++ Messages

CCN5232 The implicit constructor for ″%1$s″
initializes a const member.

Where: ″%1$s″ is the class.

Explanation: The class contains a const member
which must be initialized so a constructor must be
provided.

User Response: Provide a constructor.

CCN5233 The implicit constructor for ″%1$s″
initializes a reference member.

Where: ″%1$s″ is the class.

Explanation: The class contains a reference member
which must be initialized so a constructor must be
provided.

User Response: Provide a constructor.

CCN5234 The implicit constructor for ″%1$s″
initializes a member of class type with
an ill-formed constructor.

Where: ″%1$s″ is the class.

Explanation: The class contains a member of class
type which does not have a default constructor so a
constructor must be provided.

User Response: Provide a constructor.

CCN5235 The implicit constructor for ″%1$s″
initializes a base class with an
ill-formed constructor.

Where: ″%1$s″ is the class.

Explanation: The class has a base class which does
not have a default constructor so a constructor must be
provided.

User Response: Provide a constructor.

CCN5236 The constructor initializer is
unexpected. All bases and members
have been initialized.

Explanation: The constructor initialiser list has more
elements being initialized than exist in the class. Either
objects are initialized more than once or non-members
are in the initializer list.

User Response: Remove the extra initializers from the
constructor initializer list.

CCN5237 ″%1$s″ designates both a direct
non-virtual base class and an inherited
virtual base class.

Where: ″%1$s″ is the ambiguous base class name.

Explanation: The class ″%1$s″ is ambiguous because

it refers to both a virtual base class and a non-virtual
base class.

User Response: Add qualifiers to make the name
unambiguous.

CCN5238 The data member ″%1$s″ cannot be
initialized because there is no
corresponding default constructor.

Where: ″%1$s″ is the class member.

Explanation: The data member was not in the
constructor initializer list, but the type does not have a
default constructor so the type cannot be constructed.

User Response: Add the member to the constructor
initializer list.

CCN5239 The base class ″%1$s″ cannot be
initialized because it does not have a
default constructor.

Where: ″%1$s″ is the base class.

Explanation: The base class was not in the
constructor initializer list. The type does not have a
default constructor so the base class cannot be
constructed.

User Response: Add the base class to the constructor
initializer list.

CCN5240 A duplicate case value is not allowed.

Explanation: The switch statement cannot choose a
single case if there are duplicate case values.

User Response: Remove or modify the duplicate case
value.

CCN5241 A ″%1$s″ statement is not allowed in
this scope.

Where: ″%1$s″ is the type of statement.

Explanation: It is not valid to have this type of
statement in this scope.

User Response: Remove the statement.

CCN5242 ″goto %1$s″ bypasses the initialization
of ″%2$s″.

Where: ″%1$s″ is the label. ″%2$s″ is the missed
variable.

Explanation: The goto statement skips over the
initialization of an automatic variable.

User Response: Move the label before the variable
declaration.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 119

CCN5243 Label ″%1$s″ is already defined.

Where: ″%1$s″ is the duplicate label.

Explanation: A label can only refer to one location in
a function.

User Response: Rename the label.

CCN5244 Label ″%1$s″ is not declared in this
function.

Where: ″%1$s″ is the missing label.

Explanation: Labels are only visible within the function
in which they exist; either the label is not defined or it is
in a different function than the goto.

User Response: Add the label to the function.

CCN5245 The switch statement already has a
″default″ statement.

Explanation: A switch statement may contain only one
default statement.

User Response: Remove the extra default statement.

CCN5246 The ″%1$s″ statement bypasses the
initialization of ″%2$s″.

Where: ″%1$s″ is the case or default statement.
″%2$s″ is the bypassed variable.

Explanation: A case for the switch contains automatic
variables that are not contained within a compound
statement.

User Response: Add a pair of braces {} to enclose
the code containing the automatic variable.

CCN5247 This message is no longer used.

CCN5248 ″%1$s″ is not a class name.

Where: ″%1$s″ is the name.

Explanation: The name was expected to be a class
name but it is not.

User Response: Change the name to be a class
name.

CCN5249 Default arguments are not available
due to other errors.

Explanation: This error is a cascade error. The default
initialisers cannot be used because of other errors.

User Response: Fix the errors in the default
initializers.

CCN5250 The keyword ″this″ is only allowed in a
non-static class member function body
or in a constructor member initializer.

Explanation: The ″this″ keyword has been used in the
wrong context.

User Response: Remove the ″this″ keyword.

CCN5251 The ″%1$s″ operator cannot be applied
to the undefined class ″%2$s″.

Where: ″%1$s″ is the operator. ″%2$s″ is the
undefined class.

Explanation: The use of the ″%1$s″ operator requires
that the class that is being used as the operand be
defined and not just declared.

User Response: Define the class.

CCN5252 ″%1$s″ contains a circular reference
back to ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the classes with
circular references.

Explanation: The two classes contain references to
each other that require each class to be defined before
the other.

User Response: Change one of the classes so that it
does not require the other class to be defined.

CCN5253 This use of undefined class ″%1$s″ is
not valid.

Where: ″%1$s″ is the class.

Explanation: The usage requires that the class be
defined and not just declared.

User Response: Define the class.

CCN5254 The non-static member ″%1$s″ must
be associated with an object or a
pointer to an object.

Where: ″%1$s″ is the member.

Explanation: A member of a class has been referred
to without an object but it is not a static member.

User Response: Specify an object.

CCN5255 The implicit member function ″%1$s″
cannot be defined.

Where: ″%1$s″ is the member function that cannot be
defined.

Explanation: This is a cascading error. The implicit
member function cannot be defined due to other errors
in the class.

User Response: Fix the errors in the class.

120 z/OS V1R2.0 C/C++ Messages

CCN5256 A parameter of type ″%2$s″ cannot be
initialized with an expression of type
″%1$s″.

Where: ″%2$s″ is the parameter type. ″%1$s″ is the
initialization expression type.

Explanation: The type of the argument for the function
does not match the type of the parameter.

User Response: Change the type of the parameter to
match the expected type.

CCN5257 An object or reference of type ″%2$s″
cannot be initialized with an
expression of type ″%1$s″.

Where: ″%2$s″ is the object or reference type. ″%1$s″
is the initialization expression type.

Explanation: The type of the expression is not correct
for initializing the object or reference.

User Response: Change the type of the initializer.

CCN5258 A return value of type ″%2$s″ cannot
be initialized with an expression of
type ″%1$s″.

Where: ″%2$s″ is the return value type. ″%1$s″ is the
initialization expression type.

Explanation: The type of the expression in the return
statement does not match the return type of the
function.

User Response: Change the type of the expression to
the return type of the function.

CCN5259 The name lookups of ″%1$s″ do not
yield the same type in the context of
the expression and in the context of
the class of the object expression.

Where: ″%1$s″ is the name being looked up.

Explanation: When a qualified name is specified in a
member access, it is looked up in the context specified
on the left side of the ″.″ or ″->″ and in the context of
the entire expression. It must resolve in only one of
these lookups or it must resolve to the same declaration
in both lookups.

User Response: Change the name.

CCN5260 A goto must not enter a try block or
handler.

Explanation: A goto has been specified to a label that
is in a try block or catch handler that does not also
contain the goto statement.

User Response: Change the label.

CCN5261 The header <typeinfo> must be
included before using the typeid
operator.

Explanation: The use of the typeid operator requires
that the standard header <typeinfo> be included using a
#include directive before it is used.

User Response: Include the <typeinfo> header.

CCN5262 The first argument to the ″offsetof″
macro must be a class type.

Explanation: The ″offsetof″ macro can only be used
with class types.

User Response: Change the first argument to be a
class type.

CCN5263 The non-const member function
″%1$s″ is called for ″%2$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the object.

Explanation: Only const member functions can be
called with a const object.

User Response: Change the member function to be
const or change the object to be non-const.

CCN5264 The non-volatile member function
″%1$s″ is called for ″%2$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the object.

Explanation: Only volatile member functions can be
called with a volatile object.

User Response: Change the member function to be
volatile or change the object to be non-volatile.

CCN5265 A pointer to non-const member
function type ″%1$s″ is called for
″%2$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the type.

Explanation: Only const member functions can be
called with a const pointer-to-member.

User Response: Change the member function to be
const or change the pointer-to-member to be const.

CCN5266 A pointer to non-volatile member
function type ″%1$s″ is called for
″%2$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the type.

Explanation: Only volatile member functions can be
called with a volatile pointer-to-member.

User Response: Change the member function to be
volatile or change the pointer-to-member to be volatile.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 121

CCN5267 The second operand to the ″offsetof″
macro is not valid.

Explanation: The second operand of the ″offsetof″
macro is expected to be a member.

User Response: Change the second operand to be a
member.

CCN5268 ″%1$s″ has more than one default
constructor.

Where: ″%1$s″ is the class.

Explanation: A class can only have one default
constructor. A constructor with default initializers for all
but the first parameter is considered a default
constructor if all of the defaults are used.

User Response: Remove one of the default initializers
or specify more arguments when calling the constructor.

CCN5269 ″%1$s″ has no default constructor.

Where: ″%1$s″ is the class.

Explanation: The class has no default constructor and
one cannot be generated since the class contains
objects that do not have default constructors.

User Response: Specify a default constructor.

CCN5270 An object of type ″%2$s″ cannot be
constructed from an lvalue of type
″%1$s″.

Where: ″%2$s″ and ″%1$s″ are the types of the target
and the expression.

Explanation: There is no constructor for the object
that can be used for constructing the object.

User Response: Add an appropriate constructor or
change the type.

CCN5271 ″%1$s″ is an ambiguous base class of
″%2$s″.

Where: ″%1$s″ is the base. ″%2$s″ is the class.

Explanation: The base class is ambiguous because
the class has more than one base class with the same
name.

User Response: Add qualifiers to uniquely specify the
base class.

CCN5272 An array allocated by ″new″ cannot
have an initializer.

Explanation: An initializer cannot be specified for an
array that is allocated using new.

User Response: Remove the initializer.

CCN5273 The array bound must have a positive
value.

Explanation: An array cannot be declared with a
negative number of elements.

User Response: Change the array bound.

CCN5274 The name lookup for ″%1$s″ did not
find a declaration.

Where: ″%1$s is the unresolved name.

Explanation: The name is not declared within this or
an enclosing scope.

User Response: Declare the variable or change the
name.

CCN5275 The array boundary must have integral
type or enumeration type.

Explanation: Only integral types can be used to
specify an array bound.

User Response: Change the array bound to be an
integral type.

CCN5276 The local variable ″%1$s″ cannot be
used in this context.

Where: ″%1$s″ is the local variable.

Explanation: A local variable cannot be used to
specify default initializers for a function.

User Response: Remove the default initializers.

CCN5277 The local variable ″%1$s″ from
function ″%2$s″ cannot be used in
function ″%3$s″.

Where: ″%1$s″ is the variable. ″%2$s″ is the
enclosing function. ″%3$s″ is the current function.

Explanation: A local variable from an enclosing
function cannot be used in this context.

User Response: Remove the variable usage.

CCN5278 The reference variable ″%1$s″ must be
initialized.

Where: ″%1$s″ is the reference variable.

Explanation: All reference variables must be initialized
but no initializer is specified.

User Response: Specify an initializer.

122 z/OS V1R2.0 C/C++ Messages

CCN5279 The class member ″%1$s″ of type
″%2$s″ must be initialized in the
initializer list of the constructor.

Where: ″%1$s″ is the member. ″%2$s″ is the class
type.

Explanation: The member must be initialized in the
constructor initializer list.

User Response: Add an initializer to the constructor
initializer list.

CCN5280 The initializer is too long.

Explanation: The initializer for the array has too many
initializers.

User Response: Remove the extra initializers.

CCN5281 An expression of type ″%1$s″ cannot
be modified.

Where: ″%1$s″ is the type that cannot be modified.

Explanation: The expression on the left side of the
assignment or reference parameter cannot be modified.

User Response: Substitute an object that can be
modified.

CCN5282 The const variable ″%1$s″ is
uninitialized.

Where: ″%1$s″ is the const variable.

Explanation: All const variables must be initialized.

User Response: Initialize the variable.

CCN5283 ″%1$s″ is not a valid type for a
function-style cast.

Where: ″%1$s″ is the type that is attempting to be
cast to.

Explanation: Only simple type specifiers (built-in types
and named types) can be used in a function-style cast.

User Response: Change the type of the cast.

CCN5284 The bit-field ″%1$s″ cannot be bound
to a non-const reference.

Where: ″%1$s″ is the bit-field.

Explanation: A bit-field can only be bound to a
non-volatile const reference.

User Response: Change the reference type.

CCN5285 The expression calls the undefined
pure virtual function ″%1$s″.

Where: ″%1$s″ is the function.

Explanation: Undefined pure virtual functions cannot
be directly called.

User Response: Change the function being called.

CCN5286 The unqualified member ″%1$s″ should
be qualified with ″%2$s::″ and
preceded by an ″&″ when forming an
expression with type
pointer-to-member.

Where: ″%1$s″ is the member. ″%2$s″ are the
qualifiers.

Explanation: A non-static member must be associated
with an object.

User Response: Add the qualifiers and address
operator.

CCN5287 ″offsetof″ must not be applied to
″%1$s″. It is not a POD (plain old data)
type.

Where: ″%1$s″ is the type.

Explanation: ″offsetof″ cannot be applied to a class
that is not a POD. POD types do not have non-static
pointers-to-member, non-POD members, destructors, or
copy assignment operators (that is, they are similar to
C-style structs).

User Response: Change the type to be a POD type.

CCN5288 The function template parameter of
type ″%2$s″ cannot be initialized with
an argument of type ″%1$s″.

Where: ″%2$s″ is the function template parameter
type. ″%1$s″ erroneous argument specified.

Explanation: The type of the argument is not
appropriate for the type expected.

User Response: Change the type of the argument.

CCN5289 The function template parameter
″%1$s″ has been found to have two
types: type ″%2$s″ and type ″%3$s″.

Where: ″%1$s″ is the template parameter. ″%2$s″ and
″%3$s″ are the two conflicting deduced types.

Explanation: Template argument deduction has
arrived at two equally likely types for the same template
type parameter.

User Response: Explicitly specify the template
arguments.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 123

CCN5290 The function template parameter
″%1$s″ has been found to have two
values: ″%2$s″ and ″%3$s″.

Where: ″%1$s″ is the template parameter. ″%2$s″ and
″%3$s″ are the two conflicting deduced values.

Explanation: Template argument deduction has
arrived at two equally likely values for the same
non-type template parameter.

User Response: Explicitly specify the template
arguments.

CCN5291 The template argument for ″%1$s″
cannot be found.

Where: ″%1$s″ is the template parameter.

Explanation: Template argument deduction has failed.
Either nothing matched or there was an ambiguity.

User Response: Explicitly specify the template
argument, or change the template.

CCN5292 This message is no longer used.

CCN5293 The argument to va_start must be a
parameter name.

Explanation: A non-parameter has been specified to
va_start.

User Response: Change the argument to a parameter
name.

CCN5294 An object or reference of type ″%2$s″
cannot be initialized with an rvalue of
type ″%1$s″.

Where: ″%2$s″ is the type of the object. ″%1$s″ is the
type of the rvalue.

Explanation: This object or reference must be
initialized with an object.

User Response: Change the type of the object or
reference.

CCN5295 A parameter of type ″%2$s″ cannot be
initialized with an rvalue of type
″%1$s″.

Where: ″%2$s″ is the type of the parameter. ″%1$s″ is
the type of the rvalue.

Explanation: This parameter must be initialized with
an object.

User Response: Change the type of the parameter.

CCN5296 A return value of type ″%2$s″ cannot
be initialized with an rvalue of type
″%1$s″.

Where: ″%2$s″ is the return type. ″%1$s″ is the type
of the rvalue.

Explanation: The return value must be initialized with
an object.

User Response: Change the return type.

CCN5297 This message is no longer used.

CCN5298 Template argument deduction cannot
be performed using the function
″%1$s″.

Where: ″%1$s″ is the name of the function.

Explanation: Argument deduction can only be
performed with a function if the set of overloaded
functions does not contain a template function.

User Response: Explicitly specify the template
argument or change the template.

CCN5299 The ″%1$s″ operator cannot be applied
to a pointer to incomplete type:
″%2$s″.

Where: ″%1$s″ is the operator. ″%2$s″ is the
incomplete type.

Explanation: The ″%1$s″ operator requires that the
type of its operand be defined and not just declared.

User Response: Define the type of the operand.

CCN5300 The ″private″ member ″%1$s″ cannot
be accessed.

Where: ″%1$s″ is the member.

Explanation: The member is declared in a private
section of the class and cannot be accessed.

User Response: Change the access of the member.

CCN5301 The ″protected″ member ″%1$s″
cannot be accessed.

Where: ″%1$s″ is the member.

Explanation: The member is declared in a protected
section of the class and cannot be accessed.

User Response: Change the access of the member or
remove the reference.

124 z/OS V1R2.0 C/C++ Messages

CCN5302 ″%1$s″ is a ″private″ base class of
″%2$s″.

Where: ″%1$s″ is the base class. ″%2$s″ is the
derived class.

Explanation: The base class is private and cannot be
accessed.

User Response: Change the access of the base
class.

CCN5303 ″%1$s″ is a ″protected″ base class of
″%2$s″.

Where: ″%1$s″ is the base class. ″%2$s″ is the
derived class.

Explanation: The base class is protected and cannot
be accessed.

User Response: Change the access of the base
class.

CCN5304 The ″private″ copy constructor ″%1$s″
cannot be accessed to create a
temporary object.

Where: ″%1$s″ is the copy constructor.

Explanation: The creation of a temporary object
requires access to the copy constructor, but the copy
constructor is private.

User Response: Change the access of the copy
constructor.

CCN5305 The ″protected″ copy constructor
″%1$s″ cannot be accessed to create a
temporary object.

Where: ″%1$s″ is the copy constructor.

Explanation: The creation of a temporary object
requires access to the copy constructor, but the copy
constructor is protected.

User Response: Change the access of the copy
constructor.

CCN5306 The ″private″ copy constructor ″%1$s″
cannot be accessed.

Where: ″%1$s″ is the copy constructor.

Explanation: Access to the copy constructor is
required but the copy constructor is private.

User Response: Change the access of the copy
constructor.

CCN5307 The ″protected″ copy constructor
″%1$s″ cannot be accessed.

Where: ″%1$s″ is the copy constructor.

Explanation: Access to the copy constructor is
required but the copy constructor is protected.

User Response: Change the access of the copy
constructor.

CCN5308 The semantics specify that a
temporary object must be constructed.

Explanation: Informational message indicating that the
semantics of the language require a temporary object to
be constructed.

User Response: See the primary message.

CCN5309 The temporary is not constructed, but
the copy constructor must be
accessible.

Explanation: Informational message that the
temporary is not constructed as an optimization but the
language semantics require that the copy constructor be
accessible.

User Response: See the primary message.

CCN5310 The assignment-style initialization of
an object of type ″%1$s″ with an
expression of type ″%2$s″ requires
access to the copy constructor.

Where: ″%1$s″ is the type of the object. ″%2$s″ is the
type of the expression.

Explanation: An assignment-style initialization
requires access to the copy constructor, but the
parentheses-style initialization does not.

User Response: Make the assignment operator a
friend of the class or use parenthesis-style initialization.

CCN5311 Access to the copy constructor is not
required if parentheses-style
initialization is used.

Explanation: An assignment-style initialization
requires access to the copy constructor, but the
parentheses-style initialization does not.

User Response: Make the assignment operator a
friend of the class or use parenthesis-style initialization.

CCN5400 ″%1$s″ has a conflicting declaration.

Where: ″%1$s″ is the name which has a conflicting
declaration

Explanation: The specified name has already been
given a different declaration.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 125

User Response: Change the name for this
declaration, or use the existing declaration.

CCN5401 The member ″%1$s″ is already
declared.

Where: ″%1$s″ is the name of the member.

Explanation: The member name has already been
used in this class. The compiler cannot tell the
difference between two members with the same name
unless they are both member functions with different
parameters.

User Response: Change the name of the member, or
use the existing declaration. If the member name is a
member function, modify the parameters to overload the
function.

CCN5402 The non-static member ″%1$s″ must
not be defined outside of the class
definition.

Where: ″%1$s″ is the member.

Explanation: Only static members can have a
definition outside of the class definition. Non-static
members only exist when a object is created from the
class.

User Response: Move the definition of the member
inside the class constructor or make the member static.

CCN5403 ″%1$s″ is already defined.

Where: ″%1$s″ is the name which has already been
defined.

Explanation: The specified name has already been
defined in another location.

User Response: Remove one of the definitions for
this name, or use another name.

CCN5404 The out-of-line member function
declaration for ″%1$s″ must have a
body.

Where: ″%1$s″ is the name of the member function.

Explanation: A member function must be declared
inside its class and may be defined either inside its
class or outside its class. It may not be redeclared
outside its class.

User Response: Add the definition for the body of this
function.

CCN5405 The default arguments for ″%1$s″ must
not be redefined.

Where: ″%1$s″ is the name of the function.

Explanation: If there is more than one declaration for
the specified function, the default arguments should be

given the same values in both.

User Response: Remove the duplicate declaration, or
change the default arguments so that they match.

CCN5406 The namespace alias ″%1$s″ is already
defined.

Where: ″%1$s″ is the namespace alias.

Explanation: A namespace alias in a declarative
region can only be redefined to denote the same
namespace.

User Response: Remove or change the namespace
alias.

CCN5407 The base class ″%1$s″ contains a
circular reference back to ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the names of the
conflicting classes.

Explanation: A reference in the base class requires
that the derived class be complete. There is no way to
complete both classes.

User Response: Change one of the classes to
remove the circularity.

CCN5408 The base class ″%1$s″ is declared but
not defined.

Where: ″%1$s″ is the name of the base class.

Explanation: A base class must be a complete class.

User Response: Define the base class before it is
used in a base specifier list.

CCN5409 ″%1$s″ must not be used more than
once in the list of base classes.

Where: ″%1$s″ is the name of the duplicate base
class.

Explanation: Listing the same class twice or more in a
base specifier list is not allowed.

User Response: Remove the duplicate base class.

CCN5410 The direct base ″%1$s″ of class ″%2$s″
is ignored because ″%1$s″ is also an
indirect base of ″%2$s″.

Where: ″%1$s″ is the name of the base class. ″%2$s″
is the name of the derived class.

Explanation: The base class has been specified
directly as well as indirectly.

User Response: None needed, but the redundant
base class can be removed.

126 z/OS V1R2.0 C/C++ Messages

CCN5411 The default arguments for ″%1$s″ are
in error.

Where: ″%1$s″ is the template parameter declaration.

Explanation: A default template argument cannot refer
to the template parameter.

User Response: Correct the default arguments.

CCN5412 The union ″%1$s″ cannot be used as a
base class.

Where: ″%1$s″ is the name of the union.

Explanation: A union must not have, or be used as a
base class.

User Response: Remove the union base specifier or
change it to a class.

CCN5413 ″%1$s″ is already declared with a
different access.

Where: ″%1$s″ is the name of the member.

Explanation: A member declaration must have only
one access.

User Response: Remove the offending declaration or
declare it with the same access.

CCN5414 ″%1$s″ is declared differently in the
body of function ″%2$s″.

Where: ″%1$s″ is the duplicate local declaration.
″%2$s″ is the function containing it.

Explanation: The specified local name has already
been given a different declaration.

User Response: Change the name for this
declaration, or remove the conflicting duplicate
declaration.

CCN5415 ″%1$s″ is already declared with default
template arguments.

Where: ″%1$s″ is the name of the template
parameter.

Explanation: A template parameter may not be given
default arguments in two different declarations.

User Response: Remove the default argument on one
of the declarations.

CCN5416 ″%1$s″ cannot be declared because its
name has already been used.

Where: ″%1$s″ is the member name.

Explanation: A member can only be declared once in
a class.

User Response: Change or remove one of the uses.

CCN5417 The qualified id-declarator ″%1$s″
cannot refer to a name introduced by a
using declaration.

Where: ″%1$s″ is the qualified ID.

Explanation: The qualified ID collides with a name in
a using declaration.

User Response: Change the declaration or remove
the using declaration.

CCN5418 The definition of ″%1$s″ cannot
contain an initializer because the
initializer was specified in the class
definition.

Where: ″%1$s″ is the data member.

Explanation: The out-of-line definition of a static data
member can only have an initializer when there is no
initializer on the declaration in the class.

User Response: Remove one of the initializers.

CCN5419 An exception-specification must be
specified as ″%1$s″ to match the
implicit declaration.

Where: ″%1$s″ is the exception specification.

Explanation: All declarations of a function including
definitions and explicit specializations must have either
no exception specification or the same set of types
listed in their exception specifications.

User Response: Correct the exception specification.

CCN5420 ″%1$s″ is declared differently than the
implicit declaration ″%2$s″.

Where: ″%1$s is the declaration. ″%2$s″ is the implicit
declaration.

Explanation: A duplicate declaration of an implicit
declaration is in error.

User Response: Correct or remove the declaration.

CCN5421 ″%1$s″ is declared differently than the
internally generated declaration
″%2$s″.

Where: ″%1$s is the declaration. ″%2$s″ is the
internally generated declaration.

Explanation: A duplicate declaration of an internal
declaration is in error.

User Response: Correct or remove the declaration.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 127

CCN5422 ″%1$s″ cannot be declared before
″%2$s″, and ″%2$s″ cannot be
declared before ″%1$s″.

Where: ″%1$s″ and″%2$s″ are the two declarations.

Explanation: Each of the two declarations is coded so
that it requires the other declaration first.

User Response: Change the dependence between
the two declarations.

CCN5423 The new declaration ″%1$s″ cannot be
added.

Where: ″%1$s″ is the declaration.

Explanation: The IDE is browsing and can’t add a
new declaration to the code store.

User Response: Reincorporate with the changed
source.

CCN5424 ″%1$s″ is declared on line %3$s of
″%2$s″.

Where: ″%1$s″ is the declaration. %3$s is the line
number. ″%2$s″ is the source.

Explanation: An informational message message
giving the location of a declaration.

User Response: See the primary message.

CCN5425 ″%1$s″ is defined on line %3$s of
″%2$s″.

Where: ″%1$s″ is the declaration. %3$s is the line
number. ″%2$s″ is the source.

Explanation: An informational message message
giving the location of a definition.

User Response: See the primary message.

CCN5426 The name ″%1$s″ is used on line %3$s
of ″%2$s″.

Where: ″%1$s″ is the name. %3$s is the line number.
″%2$s″ is the source.

Explanation: An informational message message
giving the location of the use of a name.

User Response: See the primary message.

CCN5427 The using declaration introduces
″%1$s″ in conflict with a declaration in
this scope.

Where: ″%1$s″ is the declaration in conflict.

Explanation: A using declaration is a declaration, so
the restrictions on declaring the same name twice in the
same region apply.

User Response: Remove the using declaration or
remove the conflicting declaration.

CCN5428 The using declaration ″%1$s″ must not
introduce a name into its own scope.

Where: ″%1$s″ is the using declaration.

Explanation: A using declaration is a declaraton, so
the restrictions on declaring the same name twice in the
same region apply.

User Response: Remove or change the using
declaration.

CCN5429 ″%1$s″ must not be repeated at block
scope.

Where: ″%1$s″ is the using declaration.

Explanation: A using declaration is a declaration, so
the restrictions on declaring the same name twice in the
same region apply (a variable at lexical block scope in
this case).

User Response: Remove the repeated using
declaration.

CCN5430 The out-of-line member declaration for
″%1$s″ must be in a namespace scope
that encloses the class definition.

Where: ″%1$s″ is the out-of-line member declaration.

Explanation: The class definition cannot be seen in
the scope that the out-of-line member declaration exists.

User Response: Move the out-of-line member
declaration into the same scope as its class definition or
a scope that encloses its class definition.

CCN5431 The declarator cannot be qualified with
the enclosing namespace ″%1$s″.

Where: ″%1$s″ is the namespace declaration.

Explanation: A nested-name-specifier cannot name
any of the namespaces that enclose the member’s
definition.

User Response: Remove the qualifiers.

CCN5432 The qualified declarator ″%1$s″ must
refer to an existing declaration.

Where: ″%1$s″ is the qualified declarator.

Explanation: When the declarator-id is qualified, the
declaration has to refer to a previously declared
member of a class or namespace and the member
cannot have been introduced by a using declaration
already.

User Response: Remove the qualified ID, or add it to
the class or namespace.

128 z/OS V1R2.0 C/C++ Messages

CCN5433 The explicitly specialized template
class member ″%1$s″ cannot be
defined unless the template class is
specialized.

Where: ″%1$s″ is the explicitly specialized template
class member.

Explanation: An out-of-line class member definition
can only be made for an existing class. A class template
explicit specialization is a separate class with different
members from the primary template.

User Response: Write the class template explicit
specialization or remove this declaration.

CCN5434 The friend function must also be
declared in the enclosing block scope.

Explanation: If a friend declaration appears in a local
class and the name specified is an unqualified name, a
prior declaration is looked up without considering
scopes that are outside the innermost enclosing
non-class scope. For a friend function declaration, if
there is no prior declaration, the program is ill-formed.

User Response: Remove the local friend function or
add the declaration to the enclosing block scope.

CCN5435 The template ″%1$s″ must not be
explicitly specialized more than once
with the same set of template
arguments.

Where: ″%1$s″ is the template.

Explanation: This is a violation of the one definition
rule.

User Response: Remove the duplicate explicit
specialization.

CCN5436 The template ″%1$s″ must not be
explicitly instantiated more than once
with the same set of template
arguments.

Where: ″%1$s″ is the template.

Explanation: Only one explicit instantiation of a
template with the same set of arguments is allowed in a
program.

User Response: Remove the duplicate explicit
instantiation.

CCN5437 The template ″%1$s″ must not be
explicitly specialized and explicitly
instantiated with the same set of
template arguments.

Where: ″%1$s″ is the template.

Explanation: A program can have either explicit

instantiation or explicit specialization of a template with
the same set of arguments, but not both.

User Response: Remove either the explicit
specialization or the explicit instantiation.

CCN5438 The template parameter ″%1$s″ must
not be redeclared.

Where: ″%1$s″ is the template parameter.

Explanation: A template parameter can be declared at
most once in a template parameter list.

User Response: Remove or change the template
parameter.

CCN5439 The template parameters ″%1$s″ do
not match the parameters for the
previous declaration for ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the template
parameters.

Explanation: A redeclaration of a template must agree
in the number and type of the template parameters.

User Response: Correct the template parameters.

CCN5500 The configuration file ″%1$s″ cannot
be opened: %2$s.

Where: ″%1$s″ is the name of the configuration file
that could not be opened. ″%2$s″ is the string returned
by the operating system when the file open failed.

Explanation: The configuration file could not be
opened.

User Response: Check the permissions on the
configuration file and that it exists.

CCN5501 The directive in the configuration file is
not recognized.

Explanation: The directive in the configuration file is
not recognized.

User Response: Change the directive.

CCN5502 The build was interrupted.

Explanation: The compilation was interupted and
stopped.

User Response: Start the compile again.

CCN5503 The name is already used in the
configuration file.

Explanation: The identifier has already been used in
the configuration file.

User Response: Change the name to be another
name that is not already used.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 129

CCN5504 The template argument must be a
constant integral expression.

Explanation: The argument for the template was not
an integral constant expression.

User Response: Change the expression to be an
integral constant expression.

CCN5505 The build failed and there are no
messages.

Explanation: The compiler has experienced an
internal failure.

User Response: Report the problem to your IBM C++
service representative.

CCN5506 The configuration file ″%1$s″ is empty.

Where: ″%1$s″ is the name of the configuration file.

Explanation: The configuration file is empty.

User Response: Check that the right configuration file
has been specified.

CCN5507 The attempt to load %1$s from the
default library path failed.

Where: ″%1$s″ is the name of the extension that
failed to load.

Explanation: The dynamic load of the compiler
extension failed.

User Response: Check the tool option on the
command line or in the configuration file.

CCN5508 The file ″%1$s″ cannot be loaded: the
program file is not an ordinary file, or
its mode does not allow execution, or
search permission is denied on a
component of the path prefix.

Where: ″%1$s″ is the name of the file.

Explanation: The loading of the file failed because of
access permissions or it was incorrectly specified.

User Response: Check the tool option on the
command line or in the configuration file.

CCN5509 The file ″%1$s″ cannot be loaded: the
program file has a valid magic number
in its header, but the header is
damaged or is incorrect for the
machine on which the file is to be run.

Where: ″%1$s″ is the name of the file.

Explanation: The program could not be loaded
because the header for the file is corrupt.

User Response: Ensure that the file has not been
corrupted.

CCN5510 The file ″%1$s″ cannot be loaded: too
many symbolic links were encountered
in translating the path name.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because
there were too many symbolic links in the path name.

User Response: Remove some of the symbolic links
in the path name.

CCN5511 The file ″%1$s″ cannot be loaded:
incorrect XCOFF header or some
problems in linking.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the
header is corrupt or improperly linked.

User Response: Ensure that the file has not been
corrupted.

CCN5512 The file ″%1$s″ cannot be loaded: the
program requires more memory than is
allowed by the system.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because it
requires too much memory.

User Response: Increase the allocated memory to the
program.

CCN5513 The file ″%1$s″ cannot be loaded: the
file is currently open for writing by a
process.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because it
is currently open for writing.

User Response: Ensure that the file is not being used
by another process and recompile.

CCN5514 The file ″%1$s″ cannot be loaded: a
component of a path name exceeded
255 characters, or an entire path name
exceeded 1023 characters.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the
path or some component of the path is too long.

User Response: Shorten the length of the path or of
the component of the path that is too long.

130 z/OS V1R2.0 C/C++ Messages

CCN5515 The file ″%1$s″ cannot be loaded: a
component of the file name does not
exist.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because
some component of the name does not exist.

User Response: Ensure that all directories in the path
name exist or change the path for the file.

CCN5516 The file ″%1$s″ cannot be loaded: a
component of the path prefix is not a
directory.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because
one of the components of the name is not a directory.

User Response: Change the path so that all
components in the path prefix are directories.

CCN5517 The file ″%1$s″ cannot be loaded: the
process root or current directory is
located in a virtual file system that has
been unmounted.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the
file system is not mounted.

User Response: Mount the required file system.

CCN5518 The file ″%1$s″ cannot be loaded: the
file name is null.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the
file name is null.

User Response: Ensure that the file name is not null.

CCN5519 The file ″%1$s″ cannot be loaded: the
file cannot be found.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because the
could not be found.

User Response: Ensure that the file exists.

CCN5522 The file ″%1$s″ cannot be loaded:
DosLoadModule return code is %2$s.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because of
operating system errors.

User Response: Ensure that the file is correctly
specified for the operating system.

CCN5523 Linkage %1$s is not known. extern ″C″
is assumed.

Where: ″%1$s″ is the unrecognized linkage.

Explanation: The specified linkage is unknown and
extern ″C″ will be used.

User Response: Change the linkage specification.

CCN5524 The file ″%1$s″ cannot be loaded.

Where: ″%1$s″ is the name of the file.

Explanation: The file could not be loaded because of
operating system errors.

User Response: Ensure that the file is correctly
specified for the operating system.

CCN5525 The enum cannot be packed to the
requested size of %1$s bytes.

Where: %1$s is the number of bytes specified.

Explanation: The range of values specified for the
enumeration is too large to be packed into the specified
number of bytes.

User Response: Change the number of bytes allowed
for the enumeration or change the enumerators to have
a smaller range.

CCN5526 One or more error messages have
been disabled.

Explanation: An error was encountered but the error
message has been suppressed.

User Response: Do not suppress the error message
or fix the error.

CCN5527 The build failure may be because of an
Internal Compiler Error or because a
tool failed to generate a message.

Explanation: Informational message about why the
build failed with no message.

User Response: Report the problem to your IBM C++
service representative.

CCN5600 The reference to ″%1$s″ is ambiguous.

Where: ″%1$s″ is the ambiguous name.

Explanation: More than one declaration was found for
the reference.

User Response: Fully qualify the reference.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 131

CCN5601 The reference to ″%1$s″ is ambiguous
because ″%1$s″ is declared in base
classes ″%2$s″ and ″%3$s″.

Where: ″%1$s″ is the ambiguous reference. ″%2$s″
and ″%3$s″ are two base classes.

Explanation: Multiple inheritance has supplied more
than one declaration with the same name.

User Response: Fully qualify the reference or change
the base classes.

CCN5602 The reference to ″%1$s″ is ambiguous
because ″%1$s″ can be accessed via
multiple paths to base class ″%2$s″.

Where: ″%1$s″ is the ambiguous reference. ″%2$s″ is
the base class.

Explanation: Multiple inheritance has resulted in a
declaration that can be reached in more than one way
through the class hierarchy.

User Response: Fully qualify the reference or change
the base classes.

CCN5603 The template declaration ″%1$s″
cannot be found. An extra ″template
<>″ may be specified on this
declaration.

Where: ″%1$s″ is the template declaration.

Explanation: Nested template explicit specializations
and out-of-line declarations require a template scope for
each level of nesting.

User Response: Check and correct the template
scopes on the declaration.

CCN5605 This message is no longer used.

CCN5700 The previous message was produced
while processing ″%1$s″.

Where: ″%1$s″ is the declaration (usually a template)
that was being processed when the error occurred.

Explanation: An informational message message
giving trace back information.

User Response: See the primary message.

CCN5701 The limit on nested template
instantiations has been exceeded while
instantiating ″%1$s″.

Where: ″%1$s″ is the last instantiation done.

Explanation: A template instantiation that requires
another instantiation can set off a chain of instantiations
with no end.

User Response: Change the template implementation

to avoid the recursion or write an explicit specialization
that will stop the instantiation chain at a reasonable
point.

CCN5702 The template argument ″%1$s″ is not
valid.

Where: ″%1$s″ is the template argument.

Explanation: The template argument does not match
the template parameter.

User Response: Correct the template argument.

CCN5704 The definitions of ″%1$s″ and ″%2$s″
have the same linkage signature
″%3$s″.

Where: ″%1$s″ and ″%2$s″ are the two declarations.
″%3$s″ is the linkage signature.

Explanation: The two definitions have the same
mangled names and the linker will be unable to
distinguish them.

User Response: Remove one of the definitions or
change its linkage.

CCN5705 The definition of ″%1$s″ has the same
linkage signature, ″%2$s″, as a symbol
from ″%3$s″.

Where: ″%1$s″ is the declaration. ″%2$s″ is the
linkage signature. ″%3$s″ is the library with the
conflicting symbol.

Explanation: Two definitions have the same mangled
names and the linker will be unable to distinguish them.

User Response: Remove one of the definitions or
change its linkage.

CCN5706 The symbol ″%1$s″ is already defined
by ″%2$s″ in target ″%3$s″.

Where: ″%1$s″ is the duplicate symbol. ″%2$s″ is the
source file or source library. ″%3$s″ is the target
executable, library, or object file.

Explanation: A symbol is being redefined by another
compilation unit.

User Response: Remove one of the symbols so that
only one definition exists.

CCN5707 The symbol ″%1$s″ has the same
signature as ″%2$s″ in target ″%3$s″.

Where: ″%1$s″ is the duplicate symbol. ″%2$s″ is the
name of the definition that is resolving to the same
symbol as ″1s″. ″%3$s″ is the target executable,
library, or object file to which ″%2$s″ belongs.

Explanation: A symbol is being redefined by another
compilation unit.

132 z/OS V1R2.0 C/C++ Messages

User Response: Remove one of the symbols so that
only one definition exists.

CCN5708 The template argument %1$s does not
match the corresponding template
parameter of ″%2$s″.

Where: %1$s is the template argument. ″%2$s″ is the
template.

Explanation: Template arguments must match the
type and kind of the template parameter.

User Response: Correct the template argument.

CCN5709 The wrong number of template
arguments have been specified for
″%1$s″, from line %3$s of ″%2$s″.

Where: ″%1$s″ is the template. ″%2$s″ is the source
file. ″%3$s″ is the line number.

Explanation: The number of template arguments must
match the number of template parameters.

User Response: Remove the extra template
arguments.

CCN5710 The static function ″%1$s″ is not
defined, but is referenced from ″%2$s″.

Where: ″%1$s″ is the static function, ″%2$s″ is the
referencing location.

Explanation: A referenced static function must be
defined.

User Response: Define the function.

CCN5711 Too few template arguments have been
specified.

Explanation: The number of template arguments must
match the number of template parameters.

User Response: Add the missing template arguments.

CCN5712 Too many template arguments have
been specified.

Explanation: The number of template arguments must
match the number of template parameters.

User Response: Remove the extra template
arguments.

CCN5713 The template argument ″%1$s″ is not
valid for a non-type template
parameter.

Where: ″%1$s″ is the invalid argument.

Explanation: A non-type template parameter cannot
be satisfied with a type.

User Response: Change the template argument to a
valid value.

CCN5714 The template argument must be a type,
to match the template parameter.

Explanation: Only a type-id can be used for a type
template argument.

User Response: Change the template argument to a
valid value.

CCN5715 The local type ″%1$s″ cannot be used
in a template argument.

Where: ″%1$s″ is the local type.

Explanation: A type defined in a function body or any
type compounded from a local type cannot be used as
a template argument.

User Response: Change the argument to be a
non-local type, or move the local type to namespace
scope.

CCN5716 The template argument ″%1$s″ does
not match the template parameter
″%2$s″.

Where: ″%1$s″ is the invalid argument, ″%2$s″ is the
template parameter.

Explanation: A template parameter must have a
template argument and a regular type template
parameter cannot have a template as an argument.

User Response: Change the argument to correctly
match the template parameter.

CCN5717 The template argument cannot use an
unnamed type.

Explanation: An unnamed type or any type
compounded from an unnamed type cannot be used as
a template argument.

User Response: Change the argument to be a
non-local type, or give the type a name.

CCN5718 An implicit copy assignment operator
cannot be created for class with a
member of type ″%1$s″.

Where: The type of the member which prohibits the
generation of an implicit copy assignment operator.

Explanation: The class does not have a user
specified copy assignment operator and one cannot be
generated because of the type of the members of the
class.

User Response: Provide a copy assignment operator.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 133

CCN5719 The previous message was produced
while processing the implicit member
function ″%1$s″.

Where: The name of the member function.

Explanation: Informational message indicating which
implicit member function caused the generation of the
error or warning message.

User Response: See the primary message.

CCN5720 Function ″%1$s″ has internal linkage
but is undefined.

Where: The name of the function that is not defined.

Explanation: A function was declared to have internal
linkage, possibly because it was declared to be static,
but it is not defined.

User Response: Define the function.

CCN5721 The explicit specialization ″%1$s″ must
be declared before it is used.

Where: ″%1$s″ is the explicit specialization.

Explanation: A use with no explicit specialization will
cause an implicit instantiation. This will conflict with the
explicit specialization.

User Response: Move the use or the declaration of
the explicit specialization.

CCN5722 The partial specialization ″%1$s″ must
be declared before it is used.

Where: ″%1$s″ is the partial specialization.

Explanation: A use with no partial specialization will
cause an implicit instantiation of the primary template.
This will give different behavior than an instantiation of
the partial specialization.

User Response: Move the use or the declaration of
the partial specialization.

CCN5723 The inline function ″%1$s″ is
referenced, but it is not defined.

Where: ″%1$s″ is the inline function.

Explanation: A referenced inline function must be
defined.

User Response: Define the function.

CCN5724 The non-type template argument
″%1$s″ of type ″%2$s″ has wrapped.

Where: %1$s is the argument value and %2$s is its
type.

Explanation: A non-type template argument has been
provided that is outside the range for the argument type.

User Response: If this is not intended, change the
argument value.

CCN5725 The physical size of an array is too
large.

Explanation: The maximum allowable size for this
target system has been exceeded.

User Response: Reduce the size of the array.

CCN5726 The physical size of a class or union is
too large.

Explanation: The maximum allowable size for this
target system has been exceeded.

User Response: Reduce the size of the class or
union.

CCN5727 The static storage is too large.

Explanation: A limit on static storage has been
exceeded.

User Response: Decrease the amount of storage
required.

CCN5728 The keyword _Packed must be used in
a typedef.

Explanation: The _Packed type specifier can only be
used in a typedef declaration.

User Response: Use _Packed in a typedef
declaration to declare the _Packed class type, then use
the typedef name to declare the variable.

CCN5729 The keyword _Packed must be
associated with a class definition.

Explanation: The _Packed specifier is only valid on a
typedef declaration with a class definition.

User Response: Define the _Packed class type in the
typedef declaration.

CCN5730 This message is no longer used.

CCN5731 This message is no longer used.

CCN5800 The conversion from codepage ″%1$s″
to ″%2$s″ cannot be initialized.

Where: ″%1$s″ is the source codepage. ″%2$s’ is the
target codepage.

Explanation: The specified codepage does not exist.

User Response: Change the codepage specified to a
valid one.

134 z/OS V1R2.0 C/C++ Messages

CCN5801 The character literal is empty.

Explanation: The character literal is invalid because it
is empty.

User Response: Change the character literal.

CCN5802 The character literal %1$s contains
more than one character.

Where: ″%1$s″ is the character literal in error.

Explanation: The character literal is invalid because it
has more than one character.

User Response: Change the character literal to a
single character.

CCN5803 The value of the character literal %1$s
contains more bytes than sizeof(int).
Only the right-most bytes are retained.

Where: ″%1$s″ is the character literal in error.

Explanation: The character literal is invalid because it
has too many bytes. The extra bytes to the left are
ignored.

User Response: Change the character literal.

CCN5804 The characters ″/*″ are detected in a
comment.

Explanation: The start of what may be a comment
has been seen inside a comment. The first string ″*/″
will finish the comment which may result in unexpected
behavior if this truly is a nested comment.

User Response: Remove the nested comment or the
string ″/*″ from the comment.

CCN5805 Division by zero occurs on the
″#%1$s″ directive.

Where: ″%1$s″ is the preprocessor directive in the
source code.

Explanation: An attempt was made to divide by zero
in a preprocessor directive.

User Response: Change the preprocessor directive to
not divide by zero.

CCN5806 The parameter ″%2$s″ has already
been used for the macro ″%1$s″.

Where: ″%1$s″ is the name of the preprocessor
macro in error. ″%2$s″ is the reused parameter from the
macro in error.

Explanation: The same identifier has been used for
more than one parameter for a macro.

User Response: Change the parameter name.

CCN5807 The #elif directive has no matching #if,
#ifdef, or #ifndef directive.

Explanation: The #elif directive requires a previous
#if, #ifdef, or #ifndef. It may be that a #endif was added
inappropriately.

User Response: Remove the #elif directive.

CCN5808 The #else directive has no matching
#if, #ifdef, or #ifndef directive.

Explanation: The #else directive requires a previous
#if, #ifdef, or #ifndef. It may be that a #endif was added
inappropriately.

User Response: Remove the #else directive.

CCN5809 The source file is empty.

Explanation: Informational message indicating that the
source file contains no preprocessing tokens.

User Response: See the primary message.

CCN5810 An empty argument is specified for
parameter ″%2$s″ of the macro ″%1$s″.

Where: ″%1$s″ is the name of the macro. ″%2$2″ is
the parameter receiving the empty argument.

Explanation: The argument specified to the macro is
empty.

User Response: Change the argument.

CCN5811 The #endif directive has no matching
#if, #ifdef, or #ifndef directive.

Explanation: The #endif directive requires a previous
#if, #ifdef, or #ifndef. It may be that a #endif was added
inappropriately.

User Response: Remove the #endif directive.

CCN5812 The escape sequence ″%1$s″ is out of
range.

Where: ″%1$s″ is the escape sequence from the
source code.

Explanation: The specified escape sequence is not
valid.

User Response: Change the escape sequence.

CCN5813 One or more #endif directives are
missing at the end of the file.

Explanation: There must be a #endif for every #if,
#ifdef, or #ifndef. It may be that a #endif was removed
inappropriately.

User Response: Add the missing #endif.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 135

CCN5814 Expecting a macro name on the #%1$s
directive but found ″%2$s″.

Where: ″%1$s″ is the preprocessor directive. ″%2$s″
is the text found where the macro name was expected.

Explanation: The text specified for the macro name is
invalid.

User Response: Change the text for the macro name.

CCN5815 Expecting the end of the line on the
#%1$s directive but found ″%2$s″.

Where: ″%1$s″ is the preprocessor directive. ″%2$s″
is the unexpected input.

Explanation: The end of line that was expected to
terminate the preprocessing directive was not found.

User Response: Change the preprocessing directive.

CCN5816 Too many arguments are specified for
the macro ″%1$s″. The extra
arguments are ignored.

Where: ″%1$s″ is the name of the macro.

Explanation: The extra arguments specified for the
macro are ignored.

User Response: Remove the extra arguments.

CCN5817 The comment which began on line
%1$s did not end before the end of the
file.

Where: ″%1$s″ is the line number on which the
comment began.

Explanation: The ″*/″ ending the comment was not
found before the end of the file.

User Response: Add ″*/″ to finish the comment.

CCN5818 The continuation sequence at the end
of the file is ignored.

Explanation: End of file is unexpected after the
continuation sequence.

User Response: Remove the continuation sequence.

CCN5819 Unable to open the file %1$s. %2$s.

Where: ″%1$s″ is the file name that could not be
opened. ″%2$s″ is the text returned by the system
when the file open failed.

Explanation: The file could not be opened because of
the reason indicated.

User Response: Ensure that the file can be opened.

CCN5820 Unable to read the file %1$s. %2$s.

Where: ″%1$s″ is the file name that could not be
opened. ″%2$s″ is the text returned by the system
when the file open failed.

Explanation: The file could not be read because of
the reason indicated.

User Response: Ensure that the file exists and can be
read.

CCN5821 The floating point literal ″%1$s″ is out
of range.

Where: ″%1$s″ is the incorrect literal.

Explanation: The floating point literal is not valid.

User Response: Change the floating point literal.

CCN5822 The name ″%1$s″ must not be defined
as a macro.

Where: ″%1$s″ is the name of the reserved macro
name.

Explanation: The name cannot be used as a macro.

User Response: Change the name of the macro.

CCN5823 The name ″%1$s″ must not be
undefined as a macro.

Where: ″%1$s″ is the name of the reserved macro
name.

Explanation: The name cannot be undefined as a
macro.

User Response: Change the name of the macro.

CCN5824 The header of the #include directive is
empty.

Explanation: The #include directive is improperly
specified.

User Response: Change the #include specification.

CCN5825 The character ″%1$s″ is not allowed.

Where: ″%1$s″ is the character.

Explanation: The character is not valid.

User Response: Change the character.

CCN5826 The use of the ## operator in the
macro ″%1$s″ is not valid.

Where: ″%1$s″ is the name of the macro in error.

Explanation: The use of the ## operator is not valid.

User Response: Change the ## operator.

136 z/OS V1R2.0 C/C++ Messages

CCN5827 The constant expression on the #%1$s
directive contains a syntax error at
″%2$s″.

Where: ″%1$s″ is the preprocessor directive. ″%2$s″
is the token that is causing the syntax error.

Explanation: There is a syntax error in the constant
expression.

User Response: Fix the syntax of the constant
expression.

CCN5828 The escape sequence ″%1$s″ is not
known. The backslash is ignored.

Where: ″%1$s″ is the escape sequence.

Explanation: The escape sequence is not valid and
the backslash is ignored.

User Response: Remove the backslash or change the
escape sequence to a valid one.

CCN5829 The suffix of the floating point literal
″%1$s″ is not valid.

Where: ″%1$s″ is the floating point literal.

Explanation: The floating point literal is improperly
specified.

User Response: Change the floating point literal.

CCN5830 The suffix of the integer literal ″%1$s″
is not valid.

Where: ″%1$s″ is the floating point literal.

Explanation: The integer literal is improperly specified.

User Response: Change the integer literal.

CCN5831 The parameter list for the macro
″%1$s″ contains a syntax error at
″%2$s″.

Where: ″%1$s″ is the name of the macro. ″%2$s″ is
the token that is causing the syntax error.

Explanation: There is a syntax error in the parameter
list for the macro.

User Response: Fix the syntax error in the parameter
list.

CCN5832 The value, ″%1$s″, of the wide
character is not valid.

Where: ″%1$s″ is the value of the wide character.

Explanation: The value of the wide character is not
valid.

User Response: Change the value of the wide
character.

CCN5833 The multibyte character ″%1$s″ is
unknown.

Where: ″%1$s″ is the multibyte character in error.

Explanation: The multibyte character is unknown.

User Response: Change the multibyte character.

CCN5834 A header name is expected on the
#include directive but ″%1$s″ is found.

Where: ″%1$s″ is the unexpected text found.

Explanation: The #include directive is not valid.

User Response: Change the #include directive.

CCN5835 The file ″%1$s″ cannot be included
because the maximum nesting of %2$s
has been reached.

Where: ″%1$s″ is the file name. ″%2$s’ is the
maximum include file nesting limit for the compiler.

Explanation: The maximum number of nested include
files has been reached.

User Response: Remove some of the included files or
change the include structure to not nest as deeply.

CCN5836 The #include file %1$s is not found.

Where: ″%1$s″ is the file name.

Explanation: The specified include file was not found.

User Response: Ensure that the file exists, change
the name of the included file, or use the include path
option to specify the path to the file.

CCN5837 An incomplete argument is specified
for the parameter ″%2$s″ of the macro
″%1$s″.

Where: ″%1$s″ is the name of the macro. ″%2$s″ is
the macro paramter.

Explanation: The argument to the macro is invalid.

User Response: Change the argument to the macro.

CCN5838 An incomplete parameter list is
specified for the macro ″%1$s″.

Where: ″%1$s″ is the acro name.

Explanation: The parameter list to the macro is
incomplete.

User Response: Change the parameter list.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 137

CCN5839 Preprocessor internal error in ″%1$s″.
File ″%2$s″: Line %3$s.

Where: ″%1$s″ is the name of the compiler function at
the time of the error. ″%2$s″ is the source file that was
being processed at the time of the error. ″%3$s″ is the
line number that was being processed at the time of the
error.

Explanation: An internal error has occurred in the
preprocessor.

User Response: Contact your IBM C++ service
representative.

CCN5840 The integer literal ″%1$s″ is out of
range.

Where: ″%1$s″ is the integer literal that is out of
range.

Explanation: The integer literal is not valid.

User Response: Change the integer literal.

CCN5841 The wide character literal %1$s
contains more than one character. The
last character is used.

Where: ″%1$s″ is the literal.

Explanation: More than one character has been
specified for a wide character literal.

User Response: Remove the extra characters from
the wide character literal.

CCN5842 The line number %1$s on the #line
directive must contain only decimal
digits.

Where: ″%1$s″ is the invalid line number specified in
the #line directive.

Explanation: The #line directive contains an invalid
number.

User Response: Change the number in the #line
directive.

CCN5843 Expecting a file name or the end of line
on the #line directive but found
″%1$s″.

Where: ″%1$s″ is the unexpected text.

Explanation: The #line directive is invalid.

User Response: Remove the extra symbols from the
#line directive.

CCN5844 Expecting a line number on the #line
directive but found ″%1$s″.

Where: ″%1$s″ is the unexpected text.

Explanation: The line number specified in the #line
directive is invalid.

User Response: Change the #line directive.

CCN5845 The #line value ″%1$s″ must not be
zero.

Where: ″%1$s″ is the invalid value specified in the
#line directive.

Explanation: The line number for a #line directive
must not be zero.

User Response: Change the line number for the #line
directive.

CCN5846 The #line value ″%1$s″ is outside the
range 0 to 32767.

Where: ″%1$s″ is the invalid value specified in the
#line directive.

Explanation: The line number for a #line directive is
too large.

User Response: Change the line number for the #line
directive.

CCN5847 Expected an identifier but found
″%2$s″ in the parameter list for the
macro ″%1$s″.

Where: ″%1$s″ is the macro name. ″%2$s″ is the
unexpected text found.

Explanation: The parameter to the macro is invalid.

User Response: Change the parameter to the macro.

CCN5848 The macro name ″%1$s″ is already
defined with a different definition.

Where: ″%1$s″ is the macro name.

Explanation: An attempt is being made to redefine the
macro.

User Response: Change the name of the macro
being defined.

CCN5849 The octal literal ″%1$s″ contains
non-octal digits.

Where: ″%1$s″ is the octal literal.

Explanation: The octal literal can only contain the
digits 0-7.

User Response: Change the literal.

138 z/OS V1R2.0 C/C++ Messages

CCN5857 The macro name ″%1$s″ is reserved
but the directive is processed.

Where: ″%1$s″ is the macro name.

Explanation: The macro name is a reserved name.

User Response: Change the name of the macro.

CCN5858 The macro name ″%1$s″ is reserved
but the directive is processed.

Where: ″%1$s″ is the macro name.

Explanation: The macro name is a reserved name.

User Response: Change the name of the macro to
one that is not reserved.

CCN5859 #error directive: %1$s.

Where: ″%1$s″ is the text that was specified by the
#error directive in the source.

Explanation: A #error directive has been processed.

User Response: Remove the #error directive.

CCN5860 A parameter name is expected after the
operator in the macro ″%1$s″ but
″%2$s″ is found.

Where: ″%1$s″ is the macro name. ″%2$s″ is the
unexpected text.

Explanation: The right operand to the # operator is
invalid.

User Response: Change the right operand to the #
operator.

CCN5861 Too few arguments are specified for
macro ″%1$s″. Empty arguments are
used.

Where: ″%1$s″ is the macro name.

Explanation: Not enough arguments have been
specified for the macro.

User Response: Add more arguments to the macro.

CCN5862 The unknown preprocessing directive
″%1$s″ is ignored.

Where: ″%1$s″ is the unknown directive.

Explanation: The preprocessing directive is unknown.

User Response: Change the preprocessing directive.

CCN5863 A character literal must end before the
end of the source line.

Explanation: The character literal is improperly
specified.

User Response: Change the character literal.

CCN5864 A #include header must end before the
end of the source line.

Explanation: The #include directive is improperly
specified.

User Response: Change the #include directive.

CCN5865 A character literal must end before the
end of the source line.

Explanation: The character literal is improperly
specified.

User Response: Change the character literal.

CCN5866 A string literal must end before the end
of the source line.

Explanation: The string literal is improperly specified.

User Response: Change the string literal.

CCN5868 A string literal must end before the end
of the source line.

Explanation: The string literal is improperly specified.

User Response: Change the string literal.

CCN5869 %1$s digits are required for the
universal-character-name ″%2$s″.

Where: ″%1$s″ is the required number of digits.
″%2$s″ is the universal-character-name.

Explanation: The universal-character-name is
improperly specified.

User Response: Change the universal-character-
name.

CCN5870 The universal-character-name ″%1$s″
is not in the allowable range for an
identifier.

Where: ″%1$s″ is the universal-character name.

Explanation: The universal-character-name is
improperly specified.

User Response: Change the universal-character-
name.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 139

CCN5871 Incomplete or invalid multibyte
character, conversion failed.

Explanation: The multibyte character is invalid.

User Response: Change the multibyte character.

CCN5872 A string literal cannot be longer than
32765 characters.

Explanation: The string literal is too long.

User Response: Change the string literal.

CCN5900 #include search attempted to open the
file ″%1$s″.

Where: ″%1$s″ is the file name.

Explanation: Informational message about the search
path when attempting to find an include file.

User Response: See the primary message.

CCN5921 ″%1$s″ is defined in the file ″%2$s″ on
line %3$s.

Where: ″%1$s″ is the macro name. ″%2$s″ is the file
name. ″%3$s″ is the line number.

Explanation: Informational message about where a
macro is defined.

User Response: See the primary message.

CCN6100 A local variable or compiler temporary
variable is being used to initialize
reference member ″%1$s″.

Explanation: Initializing a reference member with a
temporary or local variable is dangerous since it will
result in a dangling reference if the object’s life-span is
longer than the temporary or local variable.

User Response: Initialize the member with another
object.

CCN6101 A return value of type ″%1$s″ is
expected.

Explanation: The function is expected to return a
value but no return statement is given.

User Response: Add a return statement to the
function.

CCN6102 ″%1$s″ might be used before it is set.

Where: ″%1$s″ is the variable.

Explanation: The compiler cannot determine that the
variable is initialized before it is used.

User Response: Initialize the variable.

CCN6103 The address of a local variable or
temporary is used in a return
expression.

Explanation: The address of a local object is being
returned by the function but this object’s life-span will
end at the function return, resulting in a dangling
reference.

User Response: Return a different value.

CCN6104 The condition evaluates to a constant
value.

Explanation: The condition is a constant expression
which may result in code that can never be reached or
a loop that may not terminate.

User Response: Change the condition to be
non-constant.

CCN6105 The condition contains a
non-parenthesized assignment.

Explanation: An assignment is being performed in a
condition.

User Response: Change the expression; this warning
is often caused by an assignment being used when an
equality comparison is desired.

CCN6106 The local type ″%1$s″ must not be
used in a declaration with external
linkage.

Where: ″%1$s″ is the type used in the source code
declaration.

Explanation: The function has external linkage but is
using a local type so the linkage signature of the
function cannot be described.

User Response: Use a non-local type in the function
prototype.

CCN6107 An object of abstract class ″%1$s″
cannot be created.

Where: ″%1$s″ is the class.

Explanation: The class has pure virtual functions so
an object of this class type cannot be created.

User Response: Ensure that the class contains no
pure virtual functions.

CCN6108 ″%1$s″ is not a valid type.

Where: ″%1$s″ is the type.

Explanation: The specific type is not a legal type.

User Response: Change the type.

140 z/OS V1R2.0 C/C++ Messages

CCN6109 The use of undefined class ″%1$s″ is
not valid.

Where: ″%1$s″ is the class.

Explanation: The use requires that the type be
defined and not just declared.

User Response: Define the class.

CCN6110 The referenced type ″%1$s″ contains a
circular reference back to ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the types in question.

Explanation: The two types contain references to
each other that both require definitions.

User Response: Change the first class to only require
a declaration of the second class.

CCN6111 Only function declarations can have
default arguments.

Explanation: An attempt has been made to have
default arguments for a parameter in a declaration that
is not a function declaration.

User Response: Remove the default initializers.

CCN6112 ″%1$s″ is a pure virtual function.

Where: ″%1$s″ is the name of the function.

Explanation: Informational message for listing pure
virtual functions.

User Response: See the primary message.

CCN6113 The class template name ″%1$s″ must
be followed by a < in this context.

Where: ″%1$s″ is the name of the template class.

Explanation: The template must have its template
arguments specified.

User Response: Add the < and the appropriate
template arguments followed by >.

CCN6114 ″%1$s″ is not allowed as a function
return type.

Where: ″%1$s″ is the type that the function is
attempting to return.

Explanation: The return type of the function is not
valid.

User Response: Change the function return type.

CCN6115 ″%1$s″ cannot be declared to have
type ″void″.

Where: ″%1$s″ is the name of the declaration.

Explanation: The type ″void″ is not valid for this
declaration.

User Response: Change the type.

CCN6116 If ″%1$s″ is a function name, one of its
parameters may contain an undeclared
type name.

Where: ″%1$s″ is the name of the attempted function
or variable declaration.

Explanation: A function declaration that has an
unknown type as a parameter may have been
incorrectly parsed as a variable declaration with a
paren-style initializer.

User Response: See the primary message.

CCN6117 ″%1$s″ cannot use the abstract class
″%2$s″ as the type of an object,
parameter type, or return type.

Where: ″%1$s″ is what is attempting to use the
abstract base class ″%2$s″.

Explanation: The class has pure virtual functions so
an object cannot be created.

User Response: Change the type of the object being
created.

CCN6118 The declaration of ″%1$s″ uses the
undefined class ″%2$s″ when the class
must be complete.

Where: ″%1$s″ is the name of the declaration. ″%2$s″
is the type being declared.

Explanation: The usage requires the class to be
defined.

User Response: Define the class.

CCN6120 ″using %1$s″ must refer to a member
of a base class.

Where: ″%1$s″ is the argument of the using directive.

Explanation: The using declaration must refer to a
member of a base class.

User Response: Change the declaration.

CCN6121 ″%1$s″ is a class member and can be
declared only in a member declaration.

Where: ″%1$s″ is a class member.

Explanation: A using declaration for a class member
shall be a member declaration

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 141

User Response: Remove the using declaration, or
move it into a class derived from the class that contains
the member declaration.

CCN6122 A non-type template parameter cannot
have type ″%1$s″.

Where: ″%1$s″ is the invalid type.

Explanation: Only integral, enumeration, pointer or
reference types (or cv-qualified versions) are allowed as
non-type template parameters.

User Response: Correct the non-type template
parameter.

CCN6123 An initializer is not allowed for ″%1$s″.

Where: ″%1$s″ is the name of the declaration.

Explanation: An initializer has been specified for a
declaration that does not create an object.

User Response: Remove the initializer.

CCN6124 A union cannot contain a static data
member.

Explanation: Static data members have external
linkage. They cannot be used in unions, because
members of a union share the same memory.

User Response: Change the union into a class or
struct, or remove the static data member.

CCN6125 The data member ″%1$s″ cannot have
the same name as its containing class.

Where: ″%1$s″ is the name of a class data member.

Explanation: Every data member of a class must
have a name different from the name of the containing
class

User Response: Change the name of the data
member so that it is not the same as the class name.

CCN6126 The static data member ″%1$s″ is not
allowed in a local class.

Where: ″%1$s″ is a data member of a local class.

Explanation: Since static data members have external
linkage it makes no sense to have one inside a local
class. If this were permitted, the static data member
would be visible in scopes where the class itself is not
visible.

User Response: Remove the static data member or
move the class to global scope.

CCN6127 Only static data members with const
integral or const enumeration type can
specify an initializer in the class
definition.

Explanation: The declaration of a static data member
is not a definition. The definition should appear in a
namespace scope enclosing the class that contains this
member. Only static data members of const integral or
const enumeration type may be initialized inside the
class declaration. In this case, they must still be defined
in the enclosing scope without an initializer.

User Response: Move the initializer to the definition in
the containing scope, or make the type a const integral
or const enumeration.

CCN6128 The bit-field ″%1$s″ must have integral
or enumeration type.

Where: ″%1$s″ is the name of the bit-field.

Explanation: A bit-field is used to represent a
sequence of bits. Only integral or enumeration types
makes sense for bit-fields.

User Response: Change the type of the bit-field or
remove the bit-field.

CCN6129 The ″mutable″ specifier must not be
applied to a member with type ″%1$s″.

Where: ″%1$s″ is the type of the data member.

Explanation: The mutable specifier cannot be applied
to const, static or reference members.

User Response: Remove the mutable specifier from
the data member or change the type of the data
member

CCN6130 A static data member cannot be a
direct or indirect member of an
unnamed class.

Explanation: Static data members are defined and
accessed using the name of the class in which they are
defined. If the class has no name, the static data
member cannot be defined or accessed.

User Response: Give the class a name, or make the
data member non-static.

CCN6131 A zero-length bit-field must not have a
name.

Explanation: Bit-fields with zero-length are used to
specify alignment of the next bit-field at the boundary of
an allocation unit. They have no data and are therefore
not accessed for any reason.

User Response: Change the length of the bit-field or
remove the name.

142 z/OS V1R2.0 C/C++ Messages

CCN6132 ″%1$s″ must not be a member of a
union. ″%2$s″ has a non-trivial copy
assignment operator.

Explanation: Unions can only contain members that
do not have copy assignment operators.

User Response: Change the member to be a
POD-type.

CCN6133 A union must not contain a member of
type ″%1$s″.

Where: ″%1$s″ is the type.

Explanation: Reference variables are not allowed in
unions.

User Response: Change the type of the member.

CCN6134 An anonymous %1$s must not have
private or protected members.

Where: %1$s is the keyword union, struct or class.

Explanation: Only public members are allowed in
anonymous aggregates.

User Response: Ensure that all members are public.

CCN6135 The anonymous %1$s member ″%2$s″
must not have the same name as its
containing class.

Where: ″%1$s″ is either union, struct or class. ″%2$s″
is the name of the member.

Explanation: Every data member of a class must
have a name different from the name of the containing
class. Members of anonymous struct, class, or union
are referenced as members of their containing class, so
their name must also be different from the name of
containing class.

User Response: Change the name of the member.

CCN6136 ″%1$s″ cannot be a union member,
because ″%2$s″ has a non-trivial
constructor.

Where: ″%1$s″ is the declaration of the union member
″%2$s″ is the name of the class that has a non-trivial
constructor.

Explanation: A trivial constructor is created by the
compiler for a class with: no virtual functions and no
virtual base classes. All the direct base classes of its
class must have trivial constructors, and all of its
nonstatic data members that are of class type have
must have trivial constructors. An object with a
non-trivial constructor may not be a member of a union.

User Response: Change the union to a struct or a
class or remove the member which has a non-trivial
constructor.

CCN6137 ″%1$s″ cannot be a union member,
because ″%2$s″ has a non-trivial
destructor.

Where: ″%1$s″ is the declaration of the union
member. ″%2$s″ is the name of the class that has a
non-trivial destructor.

Explanation: Unions can only contain members that
do not have destructors.

User Response: Change the member to be a
POD-type.

CCN6138 Ellipsis (...) cannot be used for ″%1$s″.

Where: ″%1$s″ is the function.

Explanation: An overloaded operator cannot have an
ellipsis as a parameter.

User Response: Change the ellipsis parameter.

CCN6139 An exception-specification can appear
only in a function or pointer
declaration.

Explanation: An exception-specification is not valid for
this type.

User Response: Remove the exception-specification.

CCN6140 The member ″%1$s″ must be declared
in its containing class definition.

Where: ″%1$s″ is the member.

Explanation: The member that is being defined out of
line is not declared in the class.

User Response: Declare the variable or function as a
member of the class.

CCN6141 An anonymous %1$s can define only
non-static data members.

Where: ″%1$s″ is the keyword union, struct, or class.

Explanation: Static members are not allowed in
anonymous aggregates.

User Response: Remove the static member
declaration.

CCN6142 ″%1$s″ is ill-formed because ″%2$s″
does not have a unique final overrider.

Where: ″%1$s″ is the name of the derived class.
″%2$s″ is the qualified name of the virtual function with
no final overrider.

Explanation: The virtual function has more than one
final overrider because of virtual base classes.

User Response: Ensure that only base class has a

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 143

final overrider for the function or define the virtual
function in the class.

CCN6143 ″%1$s″ cannot be used as a base class
because it contains a zero-dimension
array.

Where: ″%1$s″ is the base class.

Explanation: The base class cannot be used since it
contains an array that has zero elements.

User Response: Change the base class.

CCN6144 All array dimensions for non-static
members must be specified and be
greater than zero.

Explanation: An array dimension is missing or is
negative.

User Response: Ensure that all dimensions are
specified as non-negative numbers.

CCN6145 A using-directive cannot appear in a
class scope.

Explanation: Using directives can only be specified in
namespace or lexical block scope.

User Response: Remove the using directive.

CCN6146 The enumerator ″%1$s″ cannot have
the same name as its containing class.

Where: ″%1$s″ is the enumerator.

Explanation: This is a name collision.

User Response: Change the name of either the
enumerator or the class.

CCN6147 ″%1$s″ cannot be declared as inline or
static.

Where: ″%1$s″ is the function name.

Explanation: There are restrictions on ″main″ since it
is the program starting point.

User Response: Remove the inline or static
specifiers.

CCN6148 The non-member function ″%1$s″
cannot be declared ″%2$s″.

Where: ″%1$s″ is the name of the function. ″%2$s″ is
the specifier.

Explanation: The specifier is only valid for member
functions.

User Response: Remove the specifier.

CCN6149 ″%1$s″ is not originally declared in
namespace ″%2$s″.

Where: ″%1$s″ is the declared name. ″%2$s″ is the
namespace.

Explanation: The qualifiers specify a namespace
which does not have a corresponding declaration.

User Response: Change the qualifiers to refer to the
proper namespace.

CCN6150 A constructor for ″%1$s″ cannot be
declared ″%2$s″.

Where: ″%1$s″ is the struct, or class. ″%2$s″ is the
specifier.

Explanation: The specifier is not valid for a
constructor.

User Response: Remove the specifier.

CCN6151 When the first parameter to the
constructor has type ″%1$s″, the
constructor must have other
parameters without default arguments.

Where: ″%1$s″ is the type.

Explanation: This is an ill-formed copy constructor
since the first parameter is not a reference.

User Response: Change the first parameter to be a
reference to make this a copy constructor.

CCN6152 The destructor for ″%1$s″ cannot be
declared ″%2$s″.

Where: ″%1$s″ is the struct, or class. ″%2$s″ is the
specifier.

Explanation: The specifier is not valid for a destructor.

User Response: Remove the specifier.

CCN6153 A destructor must not have a return
type or parameter.

Explanation: A return type or parameter has been
specified for a destructor.

User Response: Remove the return type or
parameter.

CCN6154 The destructor ″%1$s″ must not be
declared as a template.

Where: ″%1$s″ is the destructor.

Explanation: A destructor must not be a member
template.

User Response: Remove or change the destructor to
be a regular non-template destructor.

144 z/OS V1R2.0 C/C++ Messages

CCN6155 The static member function ″%1$s″
must not be declared ″%2$s″.

Where: ″%1$s″ is the name of the function. ″%2$s″ is
the specifier.

Explanation: A static function cannot have
cv-qualifiers.

User Response: Remove the cv-qualifiers.

CCN6156 A conversion operator must not have
parameters.

Explanation: A conversion operator has been
specified with parameters.

User Response: Remove the parameters.

CCN6157 A conversion operator must not have
type ″%1$s″.

Where: ″%1$s″ is the type.

Explanation: A conversion operator has been
specified with void type.

User Response: Remove the void specifier.

CCN6158 The function template ″%1$s″ must not
be declared as virtual.

Where: ″%1$s″ is the function.

Explanation: A member function template cannot be
virtual.

User Response: Change the function so that it is not
virtual or not a template.

CCN6159 The ″%1$s″ qualifier must not be
applied to ″%2$s″.

Where: ″%1$s″ is the qualifier. ″%2$s″ is the
declarator.

Explanation: The qualifier is not valid for this
declaration.

User Response: Remove the qualifier.

CCN6160 The virtual function ″%1$s″ is not
allowed in a union.

Where: ″%1$s″ is the name of the function.

Explanation: Unions cannot have virtual member
functions.

User Response: Remove the virtual specifier.

CCN6161 The default arguments for ″%1$s″ must
not be followed by uninitialized
parameters.

Where: ″%1$s″ is the name of the function.

Explanation: All parameters following a parameter
with a default initializer must also have default
initializers.

User Response: Add default initializers for all
parameters after the first parameter with a default
initializer.

CCN6162 The pure-specifier (= 0) is not valid for
the non-virtual function ″%1$s″.

Where: ″%1$s″ is the name of the function.

Explanation: The pure-specifier (= 0) is used to state
that a virtual function does not have a definition. It has
no meaning for non-virtual functions.

User Response: Make the function virtual or remove
the pure-specifier.

CCN6163 The exception-specification for ″%1$s″
is less restrictive than the
exception-specification for ″%2$s″.

Where: ″%1$s″ is the overriding function. ″%2$s″ is
the original function.

Explanation: The exception specification for an
overriding function must not list more types than the
exception specification for the original function.

User Response: Match the exception specification for
the overriding function with the original function or
modify the exception specification of the original
function.

CCN6164 The return type for ″%1$s″ differs from
the return type of ″%2$s″ that it
overrides.

Where: ″%1$s″ and ″%2$s″ are the names of the
functions.

Explanation: When overriding a function, the name,
parameters and the return type should match.

User Response: Modify the return type of the
overriding function to match the original function.

CCN6165 The virtual function ″%1$s″ is not a
valid override of ″%2$s″ because the
qualifiers are not compatible.

Where: ″%1$s″ is the function. ″%2$s″ is the function
being overridden.

Explanation: The return for an override must be more
cv-qualified than the function in the base class.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 145

User Response: Add the missing qualifiers to the
override.

CCN6166 The virtual function ″%1$s″ is not a
valid override because ″%2$s″ is an
inaccessible base class of ″%3$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the base
class. ″%3$s″ is the derived class.

Explanation: The override is not correct because the
base class containing the function is not accessible.

User Response: Remove the override.

CCN6167 The virtual function ″%1$s″ is not a
valid override because ″%2$s″ is an
ambiguous base class of ″%3$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the base
class. ″%3$s″ is the derived class.

Explanation: The override is not correct because
there are multiple base classes containing the function.

User Response: Remove the override.

CCN6168 The virtual function ″%1$s″ is not a
valid override because ″%2$s″ is not a
base class of ″%3$s″.

Where: ″%1$s″ is the function. ″%2$s″ is the base
class. ″%3$s″ is the derived class.

Explanation: The override is not correct because the
return type is not complete nor the containing class.

User Response: Change the return type to be a
complete class or the containing class.

CCN6169 The function template ″%1$s″ cannot
have default template arguments.

Where: ″%1$s″ is the function template.

Explanation: Default template arguments are not
allowed on a function template.

User Response: Remove the default template
arguments.

CCN6170 Both ″main″ and ″WinMain″ are
defined.

Explanation: Only one of ″main″ and ″WinMain″ can
be defined in a program.

User Response: Remove either ″main″ or ″WinMain″.

CCN6171 The friend function ″%1$s″ cannot be
defined in a local class.

Where: ″%1$s″ is the friend function.

Explanation: A class defined in a function body can

contain a definition of a friend function.

User Response: Remove the definition of the friend in
the local class.

CCN6172 More than one function ″%1$s″ has
non-C++ linkage.

Where: ″%1$s″ is the function.

Explanation: Only functions with C++ linkage can be
overloaded.

User Response: Change the name of the function so
that it is unique.

CCN6173 ″%1$s″ is not a valid parameter type.

Where: ″%1$s″ is the type.

Explanation: The type of the parameter is not valid.

User Response: Change the type of the parameter.

CCN6174 The member ″%1$s″ is not declared as
a template in its containing class
definition.

Where: ″%1$s″ is the member.

Explanation: This out-of-line template class member
does not exist in the class template.

User Response: Declare the member in the class
template or remove the out-of-line declaration.

CCN6175 The class template partial
specialization ″%1$s″ does not match
the primary template ″%2$s″.

Where: ″%1$s″ is the partial specialization, ″%2$s″ is
the primary template.

Explanation: Either both the primary template and the
partial specialization must be unions or neither of them
must be unions.

User Response: Make the class key match.

CCN6176 ″%1$s″ is declared with a conflicting
linkage.

Where: ″%1$s″ is the declarator.

Explanation: The linkage is not compatible with the
linkage specified in a previous declaration.

User Response: Change the linkage of one of the
declarations so that they are compatible.

146 z/OS V1R2.0 C/C++ Messages

CCN6177 Only variables with static storage can
be declared to have thread local
storage.

Explanation: The __thread is specified but the
declaration is not for a variable, or the variable is not
declared static.

User Response: Remove the __thread specifier.

CCN6178 ″%1$s″ is declared to have both %2$s
and %3$s linkage.

Where: ″%1$s″ is the declarator. ″%2$s″ is the linkage
specifier. ″%3$s″ is the linkage specifier.

Explanation: The linkage is not compatible with the
linkage specified in a previous declaration.

User Response: Change the linkage of one of the
declarations so that they are compatible.

CCN6179 ″%1$s″ contains conflicting linkages.

Where: ″%1$s″ is the declaration.

Explanation: The linkage is not compatible with the
linkage specified in a previous declaration.

User Response: Change the linkage of one of the
declarations so that they are compatible.

CCN6180 Namespace ″%1$s″ must be global.

Where: ″%1$s″ is the namespace.

Explanation: A namespace can only be declared
within another namespace or in the global namespace.

User Response: Move the namespace to be within
another namespace.

CCN6181 The number of function parameters
exceeds the target operating system
limit of %1$s.

Where: %1$s is the maximum number of function
parameters allowed.

Explanation: Too many function parameters have
been specified.

User Response: Reduce the number of function
parameters.

CCN6182 ″%1$s″ must have two or more
parameters.

Where: ″%1$s″ is the function.

Explanation: The declaration of operator new does
not have enough parameters.

User Response: Ensure that the function has at least
two parameters.

CCN6183 The non-member function ″%1$s″ must
have at least one parameter of type
class or enumeration, or a reference to
class or enumeration.

Where: ″%1$s″ is the function.

Explanation: The operator overload does not have the
correct type for its parameters.

User Response: Change the types of the parameters.

CCN6184 Wrong number of parameters for
″%1$s″.

Where: ″%1$s″ is the function.

Explanation: The declaration for the operator overload
does not have the correct number of parameters.

User Response: Change the declaration to have the
proper number of parameters.

CCN6185 ″%1$s″ must be a non-static member
function.

Where: ″%1$s″ is the function.

Explanation: The operator overload is only valid as a
non-static member function.

User Response: Change the declaration to be a
non-static member function.

CCN6186 The last parameter for postfix ″%1$s″
must be of type ″int″.

Where: ″%1$s″ is the function.

Explanation: The last parameter for the operator
overload must be of type int.

User Response: Change the last parameter to be of
type int.

CCN6187 ″%1$s″ must not have default
arguments.

Where: ″%1$s″ is the function.

Explanation: The overloaded operator must not have
default arguments.

User Response: Remove the default arguments.

CCN6188 The return type for the ″%1$s″ must
not be the containing class.

Where: ″%1$s″ is the operator.

Explanation: The return type for the overloaded
function cannot be the containing class.

User Response: Change the return type.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 147

CCN6189 The return type for ″operator new″
must be ″void *″.

Explanation: The specified return type is invalid.

User Response: Change the return type.

CCN6190 The first parameter for ″operator new″
must have type ″size_t″.

Explanation: The type of the first parameter is
incorrect.

User Response: Change the type of the first
parameter.

CCN6191 The first parameter of ″operator new″
cannot have a default argument.

Explanation: It is invalid to specify a default argument
for ″operator new″.

User Response: Remove the default argument.

CCN6192 ″%1$s″ must not be declared static in
global scope.

Where: ″%1$s″ is the function.

Explanation: Overloaded versions of ″operator new″
and ″operator delete″ must not be declared static.

User Response: Remove the static specifier.

CCN6193 The member function ″%1$s″ must not
be declared virtual.

Where: ″%1$s″ is the member function.

Explanation: ″Operator new″ and ″operator delete″
cannot be declared virtual in a member list.

User Response: Remove the virtual specifier.

CCN6194 ″%1$s″ must be a class member
function or a global function.

Where: ″%1$s″ is the function.

Explanation: The scope for the overloaded ″operator
new″ or ″operator delete″ is invalid.

User Response: Remove the declaration.

CCN6195 The return type for ″operator delete″
must be ″void″.

Explanation: A return type other than ″void″ has been
specified for ″operator delete″.

User Response: Change the return type to be ″void″.

CCN6196 The return type cannot be ″%1$s″
because ″%2$s″ does not have an
″operator->″ function.

Where: ″%1$s″ is the type. ″%2$s″ is the class or
struct.

Explanation: The return type must have an
″operator->″ function.

User Response: Add an ″operator->″ function to the
return type.

CCN6197 Parameter number %1$s for ″operator
delete″ must have type ″%2$s″.

Where: ″%1$s″ is the function parameter. ″%2$s″ is
the type.

Explanation: The parameter has the wrong type.

User Response: Change the type of the parameter.

CCN6198 Too many parameters are specified for
″operator delete″.

Explanation: There are too many parameters
specified.

User Response: Remove the extra parameters.

CCN6199 ″main″ must have a return type of type
″int″.

Explanation: A return type other than ″int″ has been
specified for ″main″.

User Response: Change the return type of ″int″ to be
″int″.

CCN6200 An ellipsis (...) handler must not be
followed by another handler.

Explanation: An ellipsis handler will match all thrown
objects, and the handlers are tried in the order that they
are specified. Therefore the ellipsis handler must be
last.

User Response: Move the ellipsis handler to be the
last handler.

CCN6201 A ″new″ expression with type ″%1$s″
must have an initializer.

Where: ″%1$s″ is the type.

Explanation: A const type must be initialized even
when it is allocated with new.

User Response: Add an initializer.

148 z/OS V1R2.0 C/C++ Messages

CCN6202 No candidate is better than ″%1$s″.

Where: ″%1$s″ is the match.

Explanation: Informational message indicating one of
the best matches for operator overloading.

User Response: See the primary message.

CCN6203 The conversion from ″%1$s″ to ″%2$s″
matches more than one conversion
function.

Where: ″%1$s″ and ″%2$s″ are the types.

Explanation: There is more than one conversion
sequence so it is an ambiguous conversion.

User Response: Provide a closer matching
conversion.

CCN6204 The conversion matches ″%1$s″.

Where: ″%1$s″ is the conversion sequence.

Explanation: Informational message indicating a
matched conversion sequence.

User Response: See the primary message.

CCN6205 The error occurred while converting to
parameter %1$s of ″%2$s″.

Where: ″%1$s″ is the parameter number. ″%2$s″ is
the function.

Explanation: Informational message about conversion
sequences.

User Response: See the primary message.

CCN6206 The class template instantiation of
″%1$s″ is ambiguous.

Where: ″%1$s″ is the template.

Explanation: The instantiation cannot be performed
since the template is not uniquely identified.

User Response: Qualify the instantiation to make it
uniquely identify a template.

CCN6207 The template arguments match ″%1$s″.

Where: ″%1$s″ is the matched template.

Explanation: Informational message indicating what
the template arguments match.

User Response: See the primary message.

CCN6208 The use of ″%1$s″ is not valid.

Where: ″%1$s″ is the invalid name.

Explanation: The name is being incorrectly used.

User Response: Fix the usage of the name.

CCN6209 The name lookup in the context of
″%1$s″ resolved to ″%2$s″.

Where: ″%1$s″ is the context. ″%2$s″ is the
resolution.

Explanation: Informational message indicating the
resolution of the name.

User Response: See the primary message.

CCN6210 Name lookup in the context of the
expression resolved to ″%1$s″.

Where: ″%1$s″ is the resolution.

Explanation: Informational message indicating what
the resolution of the name.

User Response: See the primary message.

CCN6211 The conversion type must represent
the same type in the context of the
expression as in the context of the
class of the object expression.

Explanation: The conversion type is resolved in the
left side of the member access and in the current scope
and it can only resolve in one or it must resolve to the
same entity in both.

User Response: Change the context so that the
lookups match.

CCN6212 The type of the conversion function
cannot be resolved.

Explanation: Some names in the type of the
conversion function are not declared.

User Response: Change the conversion function so
that all elements are declared.

CCN6213 The temporary for the throw
expression is of type ″%2$s″ and
cannot be initialized with an
expression of type ″%1$s″.

Where: ″%2$s″ is the type of the throw expression.
″%1$s″ is the initialization type.

Explanation: Throw expressions throw a copy (rather
than the object itself) and the temporary cannot be
initialized with the given expression.

User Response: Change the initializer or provide
appropriate constructors.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 149

CCN6214 The member expression resolves to
the type ″%1$s″.

Where: ″%1$s″ is the type being accessed.

Explanation: The left side of the class member
access refers to type ″%1$s″.

User Response: Change the class member access
expression.

CCN6215 ″%1$s″ must not have an initializer list.

Where: ″%1$s″ is the function.

Explanation: Only constructors can have constructor
initializer lists and this function is not a constructor.

User Response: Remove the constructor initializer list.

CCN6216 The unqualified member ″%1$s″ must
be qualified with ″%2$s::″ and
preceded by an ″&″ to form an
expression with type
pointer-to-member.

Where: ″%1$s″ is the member. ″%2$s″ are the
qualifiers.

Explanation: A pointer-to-member expression is of the
form: ″&className::member ″.

User Response: Add the qualifiers and address
operator.

CCN6217 The second and third operands of the
conditional operators must not both be
throw expressions.

Explanation: Only one of the second and third
operands in a ternary operator can be a throw
expression.

User Response: Change one of the second and third
operators to not be a throw expression or replace the
ternary expression with a conditional statement.

CCN6218 When defining the implicitly declared
function ″%1$s″, the header ″<new>″
should be included.

Where: ″%1$s″ is the function being implicitly
declared.

Explanation: The header ″<new>″ contains
declarations that are necessary for creating some
implicitly declared functions and must therefore be
included using the #include directive.

User Response: Include the header ″<new>″ using an
include directive.

CCN6219 ″%1$s″ must be preceded by an ″&″ to
form an expression with type
pointer-to-member.

Where: ″%1$s″ is the member.

Explanation: A non-static member must be associated
with an object.

User Response: Add the address operator.

CCN6220 The two type-names used in the
explicit destructor call, %1$s::x%1$s,
must refer to the same type.

Where: ″%1$s″ is the expected destructor
specification.

Explanation: The form used to indicate a destructor in
a pseudo-destructor call is not valid.

User Response: Change the specification of the
destructor.

CCN6221 The explicit destructor call must be
invoked for an object.

Explanation: An attempt is being made to call a
destructor without an object.

User Response: Call the destructor as a member
access on an object.

CCN6222 The destructor type ″%1$s″ does not
match the object type ″%2$s″.

Where: ″%1$s″ is the type of the destructor. ″%2$s″ is
the type of the object.

Explanation: The destructor indicated does not match
the type of the object.

User Response: Change the destructor to match the
type of the object.

CCN6223 ″%1$s″ is not valid as an identifier
expression.

Where: ″%1$s″ is the invalid form for an identifier.

Explanation: The form of the identifier is invalid.

User Response: Change the form to a valid form for
an identifier.

CCN6224 ″%1$s″ cannot be dynamically cast to
″%2$s″ because ″%1$s″ does not
declare or inherit virtual functions.

Where: ″%1$s″ is the source class. ″%2$s″ is the
target class.

Explanation: Only polymorphic classes can be
dynamically cast.

User Response: Remove the dynamic cast.

150 z/OS V1R2.0 C/C++ Messages

CCN6225 Name lookup did not find ″%1$s″ in the
context of the template definition.

Where: ″%1$s″ is the unresolved name.

Explanation: This may cause an error when the
template is instantiated. Declarations for non-dependent
names are resolved in the template definition.

User Response: Correct the unresolved name by
removing the reference or declaring it.

CCN6226 Declarations for non-dependent names
are resolved in the template definition.

Explanation: This is a submessage.

User Response: See the primary message.

CCN6227 ″%1$s″ does not depend on a template
argument.

Where: ″%1$s″ is the name that is not dependent on
the template.

Explanation: This is a submessage.

User Response: See the primary message.

CCN6228 Argument number %1$s is an lvalue of
type ″%2$s″.

Where: ″%1$s″ is the argument number. ″%2$s″ is the
lvalue type.

Explanation: Informational message describing the
type of a parameter to a function.

User Response: See the primary message.

CCN6229 Argument number %1$s is an rvalue of
type ″%2$s″.

Where: ″%1$s″ is the argument number. ″%2$s″ is the
rvalue type.

Explanation: Informational message describing the
type of a parameter to a function.

User Response: See the primary message.

CCN6230 Argument number 1 is the implicit
″this″ argument.

Explanation: Informational message describing the
implicit ″this″ argument in a member function.

User Response: See the primary message.

CCN6231 The conversion from argument number
%1$s to ″%2$s″ uses %3$s.

Where: %1$s is the argument number. ″%2$s″ is the
parameter type. %3$s is more detailed text.

Explanation: Informational message describing a
conversion sequence.

User Response: See the primary message.

CCN6232 ″%1$s″

Where: ″%1$s″ is more detailed generated text.

Explanation: Informational message describing a
standard conversion sequence.

User Response: See the primary message.

CCN6233 ″%1$s″ followed by ″%2$s″

Where: More detailed generated text.

Explanation: Informational message describing a
standard conversion sequence.

User Response: See the primary message.

CCN6234 ″%1$s″ followed by ″%2$s″ followed by
″%3$s″

Where: More detailed generated text.

Explanation: Informational message describing a
standard conversion sequence.

User Response: See the primary message.

CCN6235 the user-defined conversion ″%1$s″

Where: ″%1$s″ is the name of a user-defined
conversion function.

Explanation: Informational message describing a
user-defined conversion sequence.

User Response: See the primary message.

CCN6236 the user-defined conversion ″%1$s″
followed by ″%2$s″

Where: ″%1$s″ is the name of a user-defined
conversion function. ″%2$s″ is more detailed generated
text.

Explanation: Informational message describing a
user-defined conversion sequence.

User Response: See the primary message.

CCN6237 %1$s followed by the user-defined
conversion ″%2$s″

Where: %1$s is more detailed generated text. ″%2$s″
is the name of a user-defined conversion function.

Explanation: Informational message describing a
user-defined conversion sequence.

User Response: See the primary message.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 151

CCN6238 ″%1$s″ followed by the user-defined
conversion ″%2$s″ followed by %3$s

Where: ″%1$s″ is more detailed generated text.
″%2$s″ is the name of a user-defined conversion
function. ″%3$s″ is more detailed generated text.

Explanation: Informational message describing a
user-defined conversion sequence.

User Response: See the primary message.

CCN6239 an ellipsis conversion sequence

Explanation: Informational message about a
conversion sequence.

User Response: See the primary message.

CCN6240 the resolved overloaded function
″%1$s″

Where: ″%1$s″ is the function.

Explanation: Informational message about a
conversion sequence.

User Response: See the primary message.

CCN6260 An object of type ″%2$s″ cannot be
constructed from an rvalue of type
″%1$s″.

Where: ″%2$s″ is the type being constructed. ″%1$s″
is the type of the expression.

Explanation: There is no valid way to construct the
desired object from the given type.

User Response: Change the expression.

CCN6261 The qualified member ″%1$s″ should
not be in parentheses when forming an
expression with type
pointer-to-member.

Where: ″%1$s″ is the member.

Explanation: Informational message indicating that
removing the parentheses may resolve the error.

User Response: See the primary message.

CCN6262 The scope of ″%1$s″ extends only to
the end of the for-statement.

Where: ″%1$s″ is the variable.

Explanation: Informational message indicating the
scoping of variables introduced in for-statements. This
behavior is different in the language standard than in
previous levels of the working draft.

User Response: Move the declaration above the
for-statement.

CCN6263 Build with
″lang(ISOForStatementScopes, no)″ to
extend the scope of the
for-init-statement declaration.

Explanation: Informational message describing a
compatibility option.

User Response: See the primary message.

CCN6264 The template argument must be
preceded by an ampersand (&).

Explanation: The template argument is expected to
be the address of an object.

User Response: Add the address operator.

CCN6265 The template argument must be the
address of an object or function with
extern linkage.

Explanation: For example string literals are not
allowed because they have internal linkage.

User Response: Correct the template argument.

CCN6266 A template argument with type ″%1$s″
cannot be converted to a template
parameter with type ″%2$s″.

Where: ″%1$s″ is the argument type. ″%2$s″ is the
parameter type.

Explanation: Only certain standard conversion
sequences can be applied.

User Response: Correct the template argument type.

CCN6267 ″%1$s″ is declared with internal
linkage in source ″%2$s″.

Where: ″%1$s″ is the variable. ″%2$s″ is the source.

Explanation: Informational message about where an
object is declared with internal linkage.

User Response: See the primary message.

CCN6268 ″%1$s″ conflicts with the definition in
source ″%2$s″ because ″%3$s″ has
internal linkage.

Where: ″%1$s″ is the variable or function. ″%2$s″ is
the source. ″%3$s″ is the other variable or function with
internal linkage.

Explanation: The variable or function is defined as
static in another source file.

User Response: Remove the static from the other
definition.

152 z/OS V1R2.0 C/C++ Messages

CCN6269 The template argument for the
non-type template parameter of type
″%1$s″ must be an integral constant
expression.

Where: ″%1$s″ it the template parameter type.

Explanation: Only constant expressions are allowed
for integral or enumeration non-type template
arguments.

User Response: Correct the non-type template
parameter.

CCN6270 A function or object name must be
expressed as an id-expression.

Explanation: A function or object name used as a
non-type template argument must be an id-expression
with external linkage.

User Response: Correct the template argument to be
a name with external linkage.

CCN6271 The ″sizeof″ operator cannot be
applied to a bit-field.

Explanation: It is invalid to use the ″sizeof″ operator
on a bit-field.

User Response: Remove the ″sizeof″ operator.

CCN6272 The incomplete class ″%1$s″ is not a
valid ″catch″ type.

Where: ″%1$s″ is the class.

Explanation: Only complete types can be used in the
type for catch handlers but the specified type has only
been declared and not defined.

User Response: Define the type.

CCN6273 A pointer or reference to the
incomplete class ″%1$s″ is not a valid
″catch″ type.

Where: ″%1$s″ is the incomplete class type.

Explanation: Only pointers to complete types can be
used in the type for catch handlers but the type has
only been declared and not defined.

User Response: Change the type in the catch or
define the class.

CCN6274 The ″catch(%1$s)″ cannot be reached
because of a previous ″catch(%2$s)″.

Where: ″%1$s″ is the current handler. ″%2$s″ is the
previous handler.

Explanation: Catch handlers are tried sequentially and
this catch is unreachable because a previous handler
catches everything that this handler can catch.

User Response: Remove or change the handler.

CCN6275 Too many explicit template arguments
are specified for ″%1$s″.

Where: ″%1$s″ is the template.

Explanation: The number and type of template
arguments must match the template parameters.

User Response: Remove the extra template
arguments.

CCN6276 The explicit template specialization
″%1$s″ matches more than one
template.

Where: ″%1$s″ is the explicit specialization.

Explanation: The explicit specialization of this function
matches multiple function templates. Probably because
of allowable non-type template argument conversions.

User Response: Remove the explicit specialization,
remove one of the primary templates, or add
namespaces to separate the templates.

CCN6277 The explicit template specialization
″%1$s″ does not match any template.

Where: ″%1$s″ is the explicit specialization.

Explanation: An explicit specialization mus specialize
a primary template.

User Response: Declare the primary template or
correct the explicit specialization.

CCN6278 The deduced type ″%1$s″ does not
match the specialized type ″%2$s″.

Where: ″%1$s″ is the deduced type, ″%2$s″ is the
specialized type.

Explanation: The template argument type deduced
from the function call does not match the type in the
specialization.

User Response: Explicitly specify the template
arguments or change the call.

CCN6279 A return statement cannot appear in a
handler of the function-try-block of a
constructor.

Explanation: A return statement is in a handler for a
function-try-block of a constructor.

User Response: Remove the return statement.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 153

CCN6280 An rvalue of type ″%1$s″ cannot be
converted to ″%2$s″.

Where: ″%1$s″ is the original type. ″%2$s″ is the
target type.

Explanation: No conversion sequence exists for
converting ″%1$s″ to ″%2$s″.

User Response: Change the types or provide
conversion functions.

CCN6281 ″offsetof″ cannot be applied to ″%1$s″.
It is not a POD (plain old data) type.

Where: ″%1$s″ is the type.

Explanation: ″offsetof″ cannot be applied to a class
that is not a POD. POD types do not have non-static
pointers-to-member, non-POD members, destructors nor
copy assignment operators (ie, they are similar to
C-style structs).

User Response: Change the type to be a POD type.

CCN6282 An enumerator from an enumeration
that is in error is being referenced.

Explanation: This is a cascading error caused by an
error in the definition of the enumeration.

User Response: Fix the error in the definition of the
enumeration.

CCN6283 ″%1$s″ is not a viable candidate.

Where: ″%1$s″ is the potential resolution.

Explanation: Informational message indicating that
this was not a viable candidate for overload resolution.

User Response: See the primary message.

CCN6284 Predefined ″%1$s″ is not a viable
candidate.

Where: ″%1$s″ is the potential resolution.

Explanation: Informational message indicating that
this was not a viable candidate for overload resolution.

User Response: See the primary message.

CCN6285 The specialization matches ″%1$s″.

Where: ″%1$s″ is the matched specialization.

Explanation: Informational message indicating what a
specialization matches.

User Response: See the primary message.

CCN6286 The specialization does not match
″%1$s″.

Where: ″%1$s″ is what the specialization cannot
match.

Explanation: Informational message indicating what a
specialization cannot match.

User Response: See the primary message.

CCN6287 ″%1$s″ has internal linkage but is
undefined.

Where: ″%1$s″ is the undefined member variable or
static function.

Explanation: A static member variable or static
function must be defined.

User Response: Define the member variable or static
function.

CCN6288 The explicit template instantiation
″%1$s″ matches more than one
template.

Where: ″%1$s″ is the explicit instantiation.

Explanation: The explicit instantiation of this function
matches multiple function templates. Probably because
of allowable non-type template argument conversions.

User Response: Remove the explicit instantiation,
remove one of the primary templates, or add
namespaces to separate the templates.

CCN6289 The implicit object parameter of type
″%2$s″ cannot be initialized with an
implied argument of type ″%1$s″.

Where: ″%2$s″ is the implicit object parameter type.
″%1$s″ is the implied argument type.

Explanation: A function is being called implicitly and
the parameters do not match the expected parameters.

User Response: Provide an explicit conversion
function.

CCN6290 An rvalue cannot be converted to a
reference to a non-const type.

Explanation: Informational message indicating that the
target of the conversion must be const.

User Response: See the primary message.

CCN6291 To initialize the reference with an
rvalue, ″%1$s″ must have a copy
constructor with a parameter of type
″%2$s″.

Where: ″%1$s″ is the type of the object. ″%2$s″ is the
type of the parameter.

154 z/OS V1R2.0 C/C++ Messages

Explanation: Informational message indicating that a
copy constructor must be supplied.

User Response: See the primary message.

CCN6292 Static declarations are not considered
for a function call if the function is not
qualified.

Explanation: Informational message describing why a
static function cannot be considered.

User Response: See the primary message.

CCN6293 The explicit instantiation matches
″%1$s″.

Where: ″%1$s″ is the matched explicit instantiation.

Explanation: Informational message about matching
of explicit instantiations.

User Response: See the primary message.

CCN6294 The explicit instantiation does not
match ″%1$s″.

Where: ″%1$s″ is the explicit instantiation that is not
matched.

Explanation: Informational message about matching
of explicit instantiations.

User Response: See the primary message.

CCN6295 The explicit template instantiation
″%1$s″ does not match any template.

Where: ″%1$s″ is the explicit template instantiation.

Explanation: There is no primary template matching
this explicit template instantiation.

User Response: Remove the explicit template
instantiation or declare the primary template..

CCN6296 The const object ″%1$s″ requires
″%2$s″ to have a user-declared default
constructor.

Where: ″%1$s″ is the const object. ″%2$s″ is the
class.

Explanation: This class has a const object so the
class must have a user-declared default constructor.

User Response: Provide a user default-constructor.

CCN6297 The const object ″%1$s″ needs an
initializer or requires ″%2$s″ to have a
user-declared default constructor.

Where: ″%1$s″ is the const object. ″%2$s″ is the
class.

Explanation: This class has a const object so the

class must have a user-declared default constructor.

User Response: Provide a user default-constructor.

CCN6298 ″%1$s″ needs to be declared in the
containing scope to be found by name
lookup.

Where: ″%1$s″ is the class.

Explanation: Informational message about declaring
friend classes in the containing scope for the class to be
found by name lookup.

User Response: Declare the class in the enclosing
scope.

CCN6299 ″%1$s″ is undefined. Every variable of
type ″%2$s″ will assume ″%3$s″ has
no virtual bases and does not use
multiple inheritance.

Where: ″%1$s″ is the undefined class. ″%2$s″ is the
pointer type. ″%3$s″ is the class.

Explanation: The pointer refers to an incomplete class
so it will be assumed that the class has no virtual bases
nor multiple inheritance.

User Response: Define the class.

CCN6300 ″%1$s″ includes the file ″%2$s″.

Where: ″%1$s″ and ″%2$s″ are the two files in the
include chain.

Explanation: This is a submessage. This message is
used to specify that a certain file includes the file
″%2$s″.

User Response: See the primary message.

CCN6301 The previous error occurs during the
processing of file ″%1$s″.

Where: ″%1$s″ is the file.

Explanation: This is a submessage.

User Response: See the primary message.

CCN6302 The conflicting declaration was
encountered during the processing of
the file ″%1$s″.

Where: ″%1$s″ is the file name.

Explanation: This message describes the include
hierarchy that caused the preceding error.

User Response: Remove the conflicting declaration.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 155

CCN6303 ″%1$s″ is not visible.

Where: ″%1$s″ is the declaration.

Explanation: This message indicates that the
declaration is not visible at the current location.

User Response: Move the declaration to a position
prior to the current location.

CCN6304 ″%1$s″ is not visible from ″%2$s″.

Where: ″%1$s″ is the declaration. ″%2$s″ is the
location.

Explanation: This message indicates that the
declaration is not visible at the current location.

User Response: Move the declaration to a position
prior to the current location.

CCN6305 ″%1$s″ is not complete when included
by ″%2$s″.

Where: ″%1$s″ is the class. ″%2$s″ is the header file.

Explanation: The class or struct is incomplete when
included from a particular header file location.

User Response: Instantiate the direct nullifier of the
virtual function table operator.

CCN6400 The incorrect #pragma is ignored.

Explanation: The pragma is incorrect and is ignored.

User Response: Correct the pragma.

CCN6401 An unknown ″#pragma %1$s″ is
specified.

Where: The name of the unknown pragma.

Explanation: The specified pragma is not recognised.

User Response: Change the name of the pragma to
one that is applicable to the compiler.

CCN6402 The options for ″#pragma %1$s″ are
incorrectly specified: expected %2$s
and found %3$s. The pragma is
ignored.

Where: The name of the pragma and the expected
and found options.

Explanation: The options for the pragma are not
correctly specified and the pragma is ignored.

User Response: Change the options to the pragma as
indicated.

CCN6403 The function ″%2$s″ specified in
″#pragma %1$s″ cannot be found. The
pragma is ignored.

Where: The names of the pragma and the undeclared
function, respectively.

Explanation: The pragma is ignored because it refers
to a function that is not declared.

User Response: Change the pragma to refer to a
declared function or declare the function.

CCN6404 The parameter ″%1$s″ specified for
″#pragma %2$s″ is not valid. The
pragma is ignored.

Where: The invalid parameter and the pragma,
respectively.

Explanation: The pragma is ignored because the
parameter specified is not valid.

User Response: Change the pragma parameter.

CCN6405 Syntax error in ″#pragma %1$s″:
expected %2$s and found %3$s. The
pragma is ignored.

Where: The name of the pragma, the expected text
and the incorrect input, respectively.

Explanation: The pragma is ignored because there is
a syntax error in the pragma directive.

User Response: Correct the syntax of the pragma
specification.

CCN6406 ″#pragma %1$s″ is already specified.
The pragma is ignored.

Where: The name of the pragma that is ignored.

Explanation: The pragma is ignored because it has
already been specified.

User Response: Remove the pragma specification.

CCN6407 The function ″%2$s″ specified in
″#pragma %1$s″ does not have an
implementation. The pragma is
ignored.

Where: The name of the ignored pragma and the
name of the function that must be defined.

Explanation: The pragma is ignored because it
requires that the specified function be defined but it is
only declared.

User Response: Define the function.

156 z/OS V1R2.0 C/C++ Messages

CCN6408 ″#pragma %1$s″ has no effect. The
pragma is ignored.

Where: The name of the ignored pragma.

Explanation: Informational message that the pragma
is ignored because it has no effect. It may be that the
pragma specifies options that are already in effect.

User Response: See the primary message.

CCN6409 ″#pragma %1$s″ is not supported on
the target platform. The pragma is
ignored.

Where: The name of the ignored pragma.

Explanation: Informational message that the pragma
is ignored because it is not valid on the target platform.

User Response: See the primary message.

CCN6410 The function ″%2$s″ specified in
″#pragma %1$s″ is an overloaded
function. The pragma is ignored.

Where: The name of the ignored pragma and the
name of the overloaded function, respectively.

Explanation: The pragma is ignored because the
function specified is overloaded so it is not clear which
function is being specified.

User Response: Remove the pragma or ensure that
the function is not overloaded.

CCN6411 ″#pragma %1$s″ must be specified in
global scope. The pragma is ignored.

Where: The name of the ignore pragma.

Explanation: The pragma is ignored because it has
been specified in an invalid scope such as a function
body or class member list.

User Response: Move the pragma to global scope.

CCN6412 The declaration ″%2$s″ specified in
″#pragma %1$s″ cannot be found. The
pragma is ignored.

Where: The name of the ignored pragma and the
name of the variable or type indicated in the pragma.

Explanation: The pragma is ignored because it names
a variable or type that has not been declared.

User Response: Change the pragma to refer to a
declared variable or type or declare the indicated
variable or type.

CCN6413 The conflicting pragma is specified on
line %1$s of ″%2$s″.

Where: The coordinates of the conflicting pragma.

Explanation: Informational message about the
coordinates of the conflicting pragma.

User Response: See the primary message.

CCN6414 The function ″%2$s″ specified in
″#pragma %1$s″ is a member function.
The pragma is ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is the
function name.

Explanation: Member functions are not allowed for the
pragma specified.

User Response: Specify a non-member function in
the pragma or remove the pragma.

CCN6415 The declaration ″%2$s″ specified in
″#pragma %1$s″ is a member variable.
The pragma is ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is the
declaration.

Explanation: Member variables are not allowed for the
pragma specified.

User Response: Specify a non-member variable in
the pragma or remove the pragma.

CCN6416 The declaration ″%2$s″ specified in
″#pragma %1$s″ is a structure tag. The
pragma is ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is the
declaration.

Explanation: Structure tags are not allowed for the
pragma specified.

User Response: Fix the declaration in the pragma or
remove the pragma.

CCN6417 The declaration ″%2$s″ specified in
″#pragma %1$s″ must have ″%3$s″
linkage. The pragma is ignored.

Where: ″%1$s″ is the pragma name. ″%2$s″ is the
declaration specified in the pragma. ″%3$s″ is the
required linkage for the pragma.

Explanation: The pragma is only valid for declarations
with specific linkage.

User Response: Specify a declaration with the correct
linkage or remove the pragma.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 157

CCN6418 The function ″%1$s″ specified in
#pragma ″%2$s″ is not compatible with
the function ″%3$s″, which is also
specified in the #pragma. The pragma
will be ignored.

Where: %1$s, and %3$s are functions, %2$s is the
pragma name.

Explanation: The two functions specified in the
pragma are incompatibile.

User Response: Change the functions or remove the
pragma.

CCN6420 The packing boundary for ″#pragma
pack″ must be 1, 2, 4, 8, or 16. The
pragma is ignored.

Explanation: A ″#pragma pack″ has been specified
with an invalid boundary.

User Response: Change the pack boundary for the
″#pragma pack″ to one of the accepted boundaries or
remove the pragma.

CCN6421 The ″#pragma pack″ stack is empty.
The current alignment may change.

Explanation: The current alignment may change
because the stack for the #pragma pack is empty.

User Response: Remove the pragma or ensure that
the pragma stack is not empty by making sure that
there are an appropriate number of push pragmas.

CCN6422 The identifier does not exist within the
″#pragma pack″ stack. The current
alignment may change.

Explanation: The current alignment may change
because the identifier does not exist on the #pragma
pack stack.

User Response: Change the name of the identifier
specified in the pragma.

CCN6423 The declaration in ″#pragma map″ has
already been mapped to ″%1$s″. The
pragma is ignored.

Where: ″%1$s″ is the previous mapping of the
declaration.

Explanation: The pragma is ignored because the
declaration has already been mapped.

User Response: Remove the pragma or change the
declaration.

CCN6424 Priority values in successive ″#pragma
priority″ statements must increase.

Explanation: The priority specified is lower than a
priority specified in a previous pragma.

User Response: Increase the priority specified in the
pragma.

CCN6425 The value given for the ″#pragma
priority″ is in the range reserved for
the system.

Explanation: The priority specified in the pragma is in
the range reserved for the system. This may cause
unexpected behaviour because the declaration may
have a higher priority than system variables.

User Response: Lower the specified priority.

CCN6426 The function ″%1$s″ in ″#pragma
alloc_text″ is already specified. The
pragma is ignored.

Where: The name of the function specified in the
pragma.

Explanation: The pragma is ignored because the
function has already been specified in a previous
#pragma alloc_text.

User Response: Remove the pragma.

CCN6427 The specified object model ″%1$s″ is
not known. The pragma is ignored.

Where: The unrecognised object model.

Explanation: The pragma is ignored because the
object model is not recognised.

User Response: Change the specified object model to
one that is known.

CCN6428 The ″#pragma object_model″ stack is
empty. The pragma is ignored.

Explanation: The pragma is ignored because the
object model stack is empty.

User Response: Remove the pragma or ensure that
the stack is not empty.

CCN6429 The identifier ″%1$s″ in ″#pragma
import″ is already specified on line
%2$s of ″%3$s″. The pragma is
ignored.

Where: The name of the repeated identifier and the
coordinates of the previous pragma.

Explanation: The pragma is ignored because the
identifier has already been specified in a previous
#pragma import.

158 z/OS V1R2.0 C/C++ Messages

User Response: Remove the pragma.

CCN6430 The identifier ″%1$s″ in ″#pragma
export″ is already specified. The
pragma is ignored.

Where: The name of the repeated identifier and the
coordinates of the previous pragma.

Explanation: The pragma is ignored because the
identifier has already been specified in a previous
#pragma export.

User Response: Remove the pragma.

CCN6431 The ″#pragma enum″ stack is empty.
The pragma is ignored.

Explanation: The pragma is ignored because the
pragma enum stack is empty.

User Response: Remove the pragma or ensure that
the pragma stack is not empty.

CCN6432 The function ″%1$s″ in ″#pragma
alloc_text″ is already specified with
″#pragma code_seg″.

Where: The name of the function indicated in the
pragma.

Explanation: The pragma is in conflict with a previous
#pragma code_seg.

User Response: Remove the current or the previous
pragma.

CCN6433 The function ″%1$s″ in ″#pragma
weak″ is already specified. The pragma
is ignored.

Where: The name of the function specified in the
pragma.

Explanation: The pragma is ignored because it has
already been specified in a #pragma weak.

User Response: Remove the pragma.

CCN6434 The message id ″%1$s″ in ″#pragma
report″ is not a valid. The pragma is
ignored.

Where: The message id that must be changed.

Explanation: The pragma is ignored because the
message id is not valid.

User Response: Change the message id.

CCN6435 The function ″%1$s″ in ″#pragma
mc_func″ is already specified. The
pragma is ignored.

Where: The name of the function specified in the
pragma.

Explanation: The pragma is ignored because the
function has already been specified in a #pragma
mc_func.

User Response: Remove the pragma.

CCN6436 The function ″%1$s″ in ″#pragma
reg_killed_by″ is already specified. The
pragma is ignored.

Where: The name of the function specified in the
pragma.

Explanation: The pragma is ignored because the
function has already been specified in a #pragma
reg_killed_by.

User Response: Remove the pragma.

CCN6437 ″#pragma reg_killed_by″ must be used
with a corresponding ″#pragma
mc_func″.

Explanation: The function specified in the pragma
must have been previous specified in a #pragma
mc_func.

User Response: Provide the #pragma mc_func before
the #pragma reg_killed_by.

CCN6438 The file ″%1$s″ should be specified in
an ″#include″ directive or as a source
file in the configuration file.

Where: The name of the file that should be included.

Explanation: Informational message indicating that the
file should be an included file or it should be specified in
the configuration file.

User Response: Ensure that the file is specified in an
include directive.

CCN6439 Two or more expressions must be
specified in ″#pragma disjoint″. The
pragma is ignored.

Explanation: The pragma is ignored because it must
have two or more expressions specified.

User Response: Ensure that at least two expressions
are specified in the pragma.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 159

CCN6440 The expressions ″%1$s″ and ″%2$s″
specified in ″#pragma disjoint″ have
incompatible types. The pragma is
ignored.

Where: The two incompatible expressions, one of
which must be changed.

Explanation: The pragma is ignored because the
types specified in the two expressions are incompatible.

User Response: Change one of the expressions to
have a compatible type with the other.

CCN6441 The expression ″%1$s″ specified in
″#pragma disjoint″ is not a valid type.
The pragma is ignored.

Where: The expression specifying the invalid type.

Explanation: The pragma is ignored because the type
specified in the expression is not correct.

User Response: Change the expression to specify a
valid type.

CCN6442 The ″#pragma align″ stack is empty.
The pragma is ignored.

Explanation: The pragma is ignored because the
#pragma align stack is empty.

User Response: Remove the pragma or ensure that
the #pragma align stack is not empty.

CCN6443 ″#pragma %1$s″ overrides the original
option value.

Where: The name of the pragma that is overriding the
option value.

Explanation: Informational message indicating that the
pragma is overriding the option value.

User Response: See the primary message.

CCN6444 The ″#pragma namemangling″ stack is
empty. The pragma is ignored.

Explanation: The pragma is ignored because the
#pragma namemangling stack is empty.

User Response: Remove the pragma or ensure that
the #pragma namemangling stack is not empty.

CCN6445 The size specified for ″#pragma
pointer_size″ must be 32 or 64. The
pragma is ignored.

Explanation: The pragma is ignored because the size
specified was not 32 or 64.

User Response: Change the size specified to be 32
or 64.

CCN6446 The ″#pragma pointer_size″ stack is
empty.

Explanation: The pragma is ignored because the
#pragma pointer_size stack is empty.

User Response: Remove the pragma or ensure that
the #pragma pointer_size stack is not empty.

CCN6447 The argument ″%2$s″ specified in
″#pragma %1$s″ is not a defined class.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is
the name of the class that must be defined.

Explanation: The pragma is ignored because the
argument does not specify a defined class.

User Response: Change the argument or ensure that
the class is defined.

CCN6448 ″A #pragma IsHome″ is defined for
″%1$s″, but there is no matching
″#pragma HasHome″. The pragma is
ignored.

Where: The argument that must have a corresponding
#pragma HasHome.

Explanation: The pragma is ignored because there
must be a previously specified #pragma HasHome for
the argument.

User Response: Remove the pragma or ensure that
there is a previous corresponding #pragma HasHome.

CCN6449 More than one ″#pragma IsHome″ for
″%1$s″ in different targets.

Where: The argument that has multiple #pragma
IsHome directives.

Explanation: There are more than one #pragma
IsHome specified for the arguments in different targets.

User Response: Remove the extra #pragma IsHome
directives.

CCN6450 ″%1$s″ is not a valid .ini file directive.

Where: The invalid directive that must be changed.

Explanation: The directive is not valid for an .ini file.

User Response: Change the directive.

CCN6451 The first directive in an .ini file must be
a category line.

Explanation: The format of the .ini file is incorrect. A
category line was not found first.

User Response: Change the first directive to be a
category line.

160 z/OS V1R2.0 C/C++ Messages

CCN6452 The category [%1$s] already appears
in the .ini file ″%2$s″.

Where: ″%1$s″ is the category that is repeated.
″%2$s″ is the name of the .ini file.

Explanation: The category has already been specified
in a .ini file.

User Response: Remove the specification.

CCN6453 The property ″%1$s″ is already listed
in category [%2$s] in the .ini file
″%3$s″.

Where: ″%1$s″ is the property that is repeated.
″%2$s″ is the category in which it is repeated. ″%3$s″
is the name of the .ini file.

Explanation: There is a problem with the syntax of the
.ini file. A property is duplicated in two categories.

User Response: Remove the duplicate property from
the .ini file.

CCN6454 The declaration ″%1$s″ specified in
#pragma ″%2$s″ for communications
area was not resolved or is invalid.

Where: ″%1$s″ is the declaration in error. ″%2$s″ is
the name of the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the declaration or remove the
pragma.

CCN6455 Member ″%1$s″ is not declared as
specified in #pragma ″%2$s″. The
pragma is ignored.

Where: ″%1$s″ is the class member. ″%2$s″ is the
name of the pragma.

Explanation: The declaration of the member in the
pragma does not match the declaration for that member
in the member’s class.

User Response: Fix the declaration in the pragma or
remove the pragma.

CCN6456 Only dot member access is allowed in
#pragma ″%1$s″. The pragma is
ignored.

Where: ″%1$s″ is the name of the pragma.

Explanation: Pragma ″%1$s″ is only allowed to use
class member access with the dot operator.

User Response: Change the pragma to use dot
member access or remove the pragma.

CCN6457 Member ″%1$s″ is at offset ″%2$s″, not
at offset ″%3$s″ as specified in
#pragma assert_field_offset.

Where: ″%1$s″ is the member name. ″%2$s″ is the
actual offset. ″%3$s″ is the offset specified in the
pragma.

Explanation: The assertion in the #pragma
assert_field_offset has been violated. The member is
not at the specified offset.

User Response: Fix the offset or remove the pragma.

CCN6458 The name ″%1$s″ specified in #pragma
argopt is not a function, function
pointer, function typedef, or function
pointer typedef. The pragma will be
ignored.

Where: ″%1$s″ is the name specified in the pragma.

Explanation: The #pragma argopt only applies to
functions. This is an OS/400 (iSeries) message.

User Response: Specify a valid name or remove the
pragma.

CCN6459 The function ″%1$s″ specified in
#pragma argopt has a variable length
argument list. The pragma will be
ignored.

Where: ″%1$s″ is the function name.

Explanation: The #pragma argopt cannot be used
with a function that uses an ellipsis in its parameter list.
This is an OS/400 (iSeries) message.

User Response: Specify a function without a variable
length argument list or remove the pragma.

CCN6460 ″%1$s″ has not been declared before
the pragma pointer directive.

Where: ″%1$s″ is the type.

Explanation: ″%1$s″ must be declared before the
pragma.

User Response: Add a declaration for ″%1$s″ before
the pragma or remove the pragma.

CCN6461 ″%1$s″ is not a void pointer.

Where: ″%1$s″ is the argument to the pragma.

Explanation: The pragma has an argument.

User Response: Fix the argument to the pragma or
remove the pragma.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 161

CCN6462 ″%1$s″ is not a valid ILE pointer type.

Where: ″%1$s″ is the argument to the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: ″Fix the argument to the pragma or
remove the pragma.

CCN6463 ″%1$s″ has been used in a declaration,
the pragma is ignored.

Where: ″%1$s″ is the argument to the pragma.

Explanation: The name has already been used
previously and cannot be used again by the pragma.

User Response: Fix the argument to the pragma or
remove the pragma.

CCN6464 ″%1$s″ is not a typedef name.

Where: ″%1$s″ is the argument to the pragma.

Explanation: The pragma requires a typedef name as
an argument and the one provided is not one.

User Response: Fix the argument to the pragma or
remove the pragma.

CCN6465 Instruction sequence for ″#pragma
mc_func″ contains the character
″%1$s″ that is not a hexadecimal digit.

Where: ″%1$s″ is the invalid character specified in the
pragma.

Explanation: The pragma requires a hexadecimal
argument and one has not been provided.

User Response: Fix the instruction sequence for the
pragma or remove the pragma.

CCN6466 Instruction sequence for ″#pragma
mc_func″ contains odd number of
hexadecimal digits.

Explanation: The pragma requires an argument which
is an instruction sequence consisting of an even number
of hexadecimal digits.

User Response: Fix the instruction sequence for the
pragma or remove the pragma.

CCN6467 The include directive for the primary
source file ″%1$s″ is ignored.

Where: ″%1$s″ is the source file name.

Explanation: It was not possible for the compiler to
process the file as a primary source file.

User Response: Remove the include directive from
the configuration file.

CCN6468 The function ″%1$s″ specified in
″#pragma %2$s″ has ″%3$s″ linkage.
The pragma is ignored.

Where: ″%1$s″ is the function name. ″%2$s″ is the
name of the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Specify a function with the correct
linkage or remove the pragma.

CCN6469 The function ″%2$s″ specified in
″#pragma %1$s″ cannot be found.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is
the function name.

Explanation: Name lookup failed for the function
specified in the pragma.

User Response: Fully qualify the function, specify a
different function, or remove the pragma.

CCN6470 The source file ″%1$s″ is being
included by the source file ″%2$s″,
which has different options in effect.

Where: ″%1$s’ is the included source file. ″%2$s″ is
the source file including ″%1$s″

Explanation: The source file ″%1$s″ has been
specified as a primary source file in the configuration file
and it’s options do not match the options specified by
another primary source file that includes ″%1$s″.

User Response: Change the options to be consistent
or change ″1s″ to not be a primary source file.

CCN6471 The function or label ″%1$s″ specified
in ″#pragma exception_handler″ was
not resolved or is invalid.

Where: ″%1$s″ is the function or label.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the argument to the pragma or
remove the pragma.

CCN6472 The expression ″%1$s″ specified in
″#pragma exception_handler″ for
parameter ″%2$s″ is not a valid type.

Where: ″%1$s″ is the expression. ″%2$s″ is the
parameter to the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the expression or remove the
pragma.

162 z/OS V1R2.0 C/C++ Messages

CCN6473 The expression ″%1$s″ specified in
″#pragma exception_handler″ for
parameter ″%2$s″ is a non-const or
non-integral expression.

Where: ″%1$s″ is the expression. ″%2$s″ is the
parameter to the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the expression or remove the
pragma.

CCN6474 The value for control action parameter
expression ″%1$s″ is only valid for a
function handler (not a label as was
given or interpreted).

Where: ″%1$s″ is the expression specified in the
pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the expression or remove the
pragma.

CCN6475 The value for control action parameter
expression ″%1$s″ is not valid.

Where: ″%1$s″ is the expression specified in the
pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the expression or remove the
pragma.

CCN6476 Invalid message identifier ″%1$s″ in
message ID list parameter on
″#pragma exception_handler″.

Where: ″%1$s″ is the invalid message identifier
specified in the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the message identifier or remove
the pragma.

CCN6477 Invalid message identifier list ″%1$s″
on ″#pragma exception_handler″.

Where: ″%1$s″ is the invalid message identifier list
specified in the pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Fix the message identifier list or
remove the pragma.

CCN6478 The function ″%1$s″ specified in
″%2$s″ was not resolved to a correctly
defined and prototyped function.

Where: ″%1$s″ is the function name. ″%2$s″ is the
name of the pragma.

Explanation: Name lookup for ″%1$s″ failed. This is
an OS/400 (iSeries) message.

User Response: Provide a declaration for ″%1$s″ or
remove the pragma.

CCN6479 Disable handler has no matching
cancel/exception handler, or
cancel/exception handler is out of
scope.

Explanation: This is an OS/400 (iSeries) message.

User Response: Add a matching cancel/exception
handler or remove the pragma.

CCN6480 Function ″%1$s″ has not been declared
before the pragma descriptor directive.

Where: ″%1$s″ is the function name argument to the
pragma.

Explanation: This is an OS/400 (iSeries) message.

User Response: Declare ″%1$s″ before the pragma
descriptor directive or remove the pragma.

CCN6481 Operational descriptors for type
″%1$s″ not supported.

Explanation: This is an OS/400 (iSeries) message.

CCN6482 Function cannot have C++ or OS
linkage.

Explanation: This is an OS/400 (iSeries) message.

CCN6483 ″void″ expected, but found ″%1$s″;
operational descriptor for return type
not currently supported.

Where: ″%1$s″ is the unexpected text.

Explanation: This is an OS/400 (iSeries) message.

CCN6484 More parameters than the function
prototype.

Explanation: This is an OS/400 (iSeries) message.

CCN6485 Invalid operational descriptor specifier
″%1$s″.

Where: %1$s″ is the operational descriptor specifier.

Explanation: This is an OS/400 (iSeries) message.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 163

CCN6486 Descriptor specifier ″%1$s″ invalid for
type ″%2$s″.

Explanation: This is an OS/400 (iSeries) message.

CCN6492 No argument is specified for ″#pragma
define″. The pragma is ignored.

Explanation: The pragma requires an argument and
one was not specified.

User Response: Specify an argument or remove the
pragma.

CCN6493 Duplicate argument ″%1$s″ in
″#pragma disjoint″. The pragma is
ignored.

Where: ″%1$s″ is the duplicate argument specified in
the pragma.

Explanation: The argument indicated was duplicated
in the argument list specified for the pragma.

User Response: Remove the duplicate argument or
remove the pragma.

CCN6494 The suboption ″%1$s″ for ″#pragma
%2$s″ is not supported on the target
platform. The pragma is ignored.

Where: ″%1$s″ is the name of the suboption that is
unsupported. ″%2$s″ is the name of the pragma.

Explanation: The suboption for the pragma indicated
is not supported on this operating system.

User Response: Specify a different suboption or
remove the pragma.

CCN6495 Unexpected text ″%2$s″ found in
″#pragma %1$s″. The pragma is
ignored.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is
the text causing the syntax error.

Explanation: A syntax error has been found while
processing the pragma, causing it to be ignored.

User Response: Fix the syntax of the pragma or
remove the pragma.

CCN6496 Unexpected text ″%2$s″ found in
″#pragma %1$s″. The rest of the
pragma directive is ignored.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is
the text causing the syntax error.

Explanation: A syntax error has been found while
processing part of the pragma, causing part of it to be
ignored.

User Response: Fix the syntax of the pragma or
remove the pragma.

CCN6497 An implicit ″}″ does not find a
matching implicit ’extern ″C″ {’. An
extra ″}″ may be present.

Explanation: An unmatched ″}″ was detected while
processing a linkage specification.

User Response: Remove the extra ″}″ if one exists.

CCN6498 The function ″%2$s″ specified in
″#pragma %1$s″ has already been
defined. The pragma is ignored.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is
the name of the function.

Explanation: The pragma specified must be placed
before the definition of the function to which it refers.

User Response: Move the pragma to before the
definition of the function or remove the pragma.

CCN6499 The function ″%2$s″ specified in
″#pragma %1$s″ is virtual. The pragma
is ignored.

Where: ″%1$s″ is the name of the pragma. ″%2$s″ is
the name of the function.

Explanation: The pragma specified requires an
argument that is not a virtual function.

User Response: Change the pragma to specify a
non-virtual function or remove the pragma.

CCN6600 ″main″ should have a return type of
type ″int″.

Explanation: A return type other than ″int″ has been
specified for ″main″.

User Response: Change the return type of ″int″ to be
″int″.

CCN6601 A local class cannot have member
templates.

Explanation: Member templates can only be defined
in namespace scope classes.

User Response: Remove the template from the local
class, or move the class to non-local scope.

CCN6602 The partial specialization ″%1$s″
cannot have template parameters that
have default values.

Where: ″%1$s″ is the partial specialization.

Explanation: Default template arguments are not
allowed on partial specializations.

164 z/OS V1R2.0 C/C++ Messages

User Response: Remove the default template
arguments.

CCN6603 Default template parameter arguments
cannot be followed by uninitialized
template parameters.

Explanation: Just like function parameters, all
template parameters following a template parameter
with a default argument must also have default
arguments.

User Response: Add the missing default arguments
or remove the existing one.

CCN6604 The template parameter ″%1$s″ cannot
be used in a partially specialized
non-type argument expression.

Where: ″%1$s″ is the template parameter.

Explanation: The use of a template parameter in an
expression for a non-type template argument in partial
specialization is not allowed.

User Response: Correct the non-type template
argument expression.

CCN6605 The argument list for the partial
specialization ″%1$s″ is equivalent to
the implicit argument list of the
primary template.

Where: ″%1$s″ is the partial specialization.

Explanation: A partial specialization must specialize
something in the argument list.

User Response: Change the argument list of the
partial specialization.

CCN6606 A non-type template parameter ″%1$s″
must have integral, enumeration,
pointer, reference, or
pointer-to-member type.

Where: ″%1$s″ is the non-type template parameter.

Explanation: No other types are allowed.

User Response: Correct the non-type template
parameter type.

CCN6607 All array dimensions for ″%1$s″ should
be specified and should be greater
than zero.

Where: ″%1$s″ is the array.

Explanation: An array dimension is missing or is
negative.

User Response: Ensure that all dimensions are
specified as non-negative numbers.

CCN6608 An anonymous %1$s should only
define non-static data members.

Where: %1$s is the keyword union, struct, or class.

Explanation: Static members are not allowed in
anonymous aggregates.

User Response: Remove the static member
declaration.

CCN6609 A using declaration cannot be used to
declare ″%1$s″.

Where: ″%1$s″ is the declarator.

Explanation: The using declaration cannot be used
here.

User Response: Remove the using declaration.

CCN6610 ″%1$s″ must not be declared as import
and defined.

Where: ″%1$s″ is the function.

Explanation: The ″_Import″ specifier cannot be
specified on a definition.

User Response: Remove the ″_Import″ specifier.

CCN6611 The current option settings do not
allow the use of ″long long″.

Explanation: The declaration type is ″long long″ but
this type is disallowed due to option settings.

User Response: Change the type of the declaration or
the option settings to allow ″long long″.

CCN6612 The static variable ″%1$s″ is not
visible where ″%2$s″ is used in a
#include directive.

Where: ″%1$s″ is the static variable. ″%2$s″ is the
header file.

Explanation: A static variable is being referenced in
an include file and is not visible.

User Response: Remove the static specifier from the
declaration.

CCN6613 The static function ″%1$s″ is not
visible where ″%2$s″ is used in a
#include directive.

Where: ″%1$s″ is the static function. ″%2$s″ is the
header file.

Explanation: A static function is being referenced in
an include file and is not visible.

User Response: Remove the static specifier from the
declaration.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 165

CCN6614 ″%1$s″ must be the last data member
in its class because ″%2$s″ contains a
zero-dimension array.

Where: ″%1$s″ is the member. ″%2$s″ is the union,
struct, or class.

Explanation: Only the last non-static data member
can have a zero dimension.

User Response: Move the declaration to be the last in
the class.

CCN6615 Only the first array bound can be
omitted.

Explanation: For a multi-dimensional array, the
compiler can determine the size of the first bound based
on the number of initializers. It is unable to compute any
other omitted array bounds.

User Response: Specify all array bounds or leave
only the first bound unspecified.

CCN6616 A pointer-to-member should not be
converted from the virtual base ″%1$s″
to the derived class ″%2$s″.

Where: ″%1$s″ is the virtual base. ″%2$s″ is the
derived class.

Explanation: The conversion is from a virtual base
class to a derived class.

User Response: See the primary message.

CCN6617 The incomplete type ″%1$s″ is not
allowed in an exception-specification .

Where: ″%1$s″ is the incomplete type.

Explanation: Only complete types are allowed in an
exception-specification.

User Response: Correct the exception specification
type list.

CCN6618 ″%1$s″ is not allowed in an
exception-specification because
″%2$s″ is incomplete.

Where: ″%1$s″ is the pointer type. ″%2$s″ is the
incomplete type.

Explanation: Only pointers to complete types are
allowed in pointer exception-specification types.

User Response: Correct the exception-specification
type list.

CCN6619 The type ″%1$s″ is not valid in this
context.

Where: ″%1$s″ is the type.

Explanation: The type ″void″ is not valid for this
declaration.

User Response: Change the type.

CCN6620 ″%1$s″ must be declared to have
″stdcall″ linkage.

Where: ″%1$s″ is the function.

Explanation: The ″stdcall″ specifier must be specified.

User Response: Add the ″stdcall″ specifier.

CCN6621 The explicit specialization ″%1$s″ must
be declared in the namespace
containing the template.

Where: ″%1$s″ is the explicit specialization.

Explanation: The primary template and an explicit
specialization declaration must be in the same scope.

User Response: Move the explicit specialization
declaration to the correct scope.

CCN6622 The explicit specialization ″%1$s″ must
be defined in a namespace that
encloses the declaration of the explicit
specialization.

Where: ″%1$s″ is the explicit specialization.

Explanation: An explicit specialization must be
defined at namespace scope, in the same or an
enclosing namespace as the declaration.

User Response: Move the explicit specialization
definition to the correct scope.

CCN6623 The explicit specialization ″%1$s″
cannot have default function
arguments.

Where: ″%1$s″ is the explicit specialization.

Explanation: Default function arguments are not
allowed on an explicit specialization.

User Response: Remove the default function
arguments.

CCN6624 The partial specialization ″%1$s″ must
be declared in the same scope as the
primary template or in a namespace
scope that encloses the primary
template.

Where: ″%1$s″ is the partial specialization.

Explanation: A partial specialization declaration must

166 z/OS V1R2.0 C/C++ Messages

be in the same scope or in an enclosing namespace
scope of the primary template.

User Response: Move the partial specialization
declaration to the correct scope.

CCN6625 The explicit specialization ″%1$s″ must
not be declared in the scope of a
template.

Where: ″%1$s″ is the explicit specialization.

Explanation: An explicit specialization must be
declared in the namespace containing the primary
template.

User Response: Remove the explicit specialization.

CCN6626 At least one template argument in a
partial specialization must depend on a
template parameter.

Explanation: A partial specialization cannot be fully
specialized.

User Response: Change the declaration to an explicit
specialization or change the template arguments to be
partially specialized.

CCN6627 The bit-field ″%1$s″ cannot be greater
than 32 bits.

Where: ″%1$s″ is the bit-field.

Explanation: The size of the bit-field is too large.

User Response: Use a smaller size for the bit-field.

CCN6628 Every template parameter for a
constructor template must be used in
the parameter list of the constructor.

Explanation: There is no way to specify an explicit
template argument list for a constructor template.

User Response: Change the template parameter list
of the constructor template.

CCN6629 Every template parameter for a
conversion function template must be
used in the return type.

Explanation: There is no way to specify an explicit
template argument list for a conversion function
template.

User Response: Change the template parameter list
of the conversion function template

CCN6630 Every template parameter for a partial
specialization must be used in the
template argument list.

Explanation: The extra template parameters are not
used so they are not allowed.

User Response: Change the parameter list of the
partial specialization.

CCN6631 This message is not used.

CCN6632 The length of the identifier exceeds the
maximum limit of ″%1$s″ for a name
with ″%2$s″ linkage.

Where: ″%1$s″ is the maximum permitted identifier
length. ″%2$s″ is the linkage specifier.

Explanation: The identifier name is too large.

User Response: Replace the identifier with a smaller
identifier.

CCN6633 The name ″%1$s″ is not a recognized
built-in declaration.

Where: ″%1$s″ is the function name.

Explanation: The function specified is not a built-in
function.

User Response: Change the declaration so that it
does not specify that the function is built in.

CCN6634 An array element must not have type
″%1$s″.

Where: ″%1$s″ is the type.

Explanation: The type of the array is invalid.

User Response: Change the type of the array.

CCN6635 There cannot be a reference to a
reference.

Explanation: A reference to a reference is invalid.

User Response: Remove the extra reference.

CCN6636 There cannot be a pointer to a
reference.

Explanation: A pointer to a reference is invalid.

User Response: Change the declaration.

CCN6637 There cannot be a pointer-to-member
with reference type.

Explanation: A pointer to a member reference is
invalid.

User Response: Change the declaration.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 167

CCN6638 There cannot be an array of
references.

Explanation: The element type of an array cannot be
a reference type, void type, function type, or an abstract
class type.

User Response: Change the element type of the
array to a valid type.

CCN6639 When 64-bit mode is implemented, the
behavior of long type bit-fields may
change. Long type bit-fields currently
default to int.

Explanation: The bit-field will default to int, but this
behavior may change in future 64-bit modes.

User Response: None.

CCN6640 Cannot take the address of the
machine-coded function ″%1$s″.

Where: ″%1$s″ is the function.

Explanation: It is invalid to take the address of a
machine-coded function.

User Response: Change the expression.

CCN6645 The bit-field ″%1$s″ is too small: %2$s
bits are needed for ″%3$s″.

Where: ″%1$s″ is the bit-field. %2$s is the number of
bits. ″%3$s″ is the name of the enumerated type.

Explanation: The size of the bit-field is not large
enough to contain all of the possible values.

User Response: Increase the size of the bit-field.

CCN6646 The explicit instantiation of member
″%1$s″ must have a definition.

Where: ″%1$s″ is the member.

Explanation: The definition must be available in order
for an instantiation to be done.

User Response: Define the static member.

CCN6647 The sizes of the pointer types of the
argv parameter of function main are
different.

Explanation: The sizes of the pointer types must
match. This is an OS/400 (iSeries) message.

User Response: Use one of these, or an equivalent
for the type of the argv parameter on main:
char*__ptr128*__ptr128 char*__ptr64*__ptr64
Combinations such as the following are not allowed:
char*__ptr64*__ptr128 char*__ptr128*__ptr64

CCN6800 The divisor for the modulus or division
operator must not be zero.

Explanation: A division-by-zero condition has been
detected.

User Response: Change the expression.

CCN6801 The result of expression evaluation
resulted in an overflow.

Explanation: An overflow condition has been
detected.

User Response: Change the expression.

CCN6802 The result of expression evaluation
resulted in an underflow.

Explanation: An underflow condition has been
detected.

User Response: Change the expression.

CCN8100 ″%1$s″ specified in ″%2$s″ is not a
valid numeric value. The option is
ignored.

Where: ″%1$s″ is the invalid numeric value. ″%2$s″ is
the option being ignored.

Explanation: The specified option was ignored
because the argument was not a valid numeric value.

User Response: Verify the syntax of the option.

CCN8101 The numeric value ″%1$s″ specified in
″%2$s″ is out of bounds. The option is
ignored.

Where: ″%1$s″ is the out-of-bounds value specified.
″%2$s″ is the option being ignored.

Explanation: The specified option was ignored
because the argument was not a numeric value within
the range specified by this option.

User Response: Verify the allowable values for this
option.

CCN8102 The alignment value ″%1$s″ specified
in ″%2$s″ is not a power of two. The
option is ignored.

Where: ″%1$s″ is the invalid alignment value. ″%2$s″
is the option being ignored.

Explanation: The specified option was ignored
because the alignment specified was not a power of
two.

User Response: Verify the allowable values for this
option.

168 z/OS V1R2.0 C/C++ Messages

CCN8103 ″%1$s″ specified in ″%2$s″ is not
recognized. The option is ignored.

Where: ″%1$s″ is the unrecognized argument. ″%2$s″
is the option being ignored.

Explanation: The specified option was ignored
because the specified argument was not recognized.

User Response: Verify the syntax of the option.

CCN8104 The message number %1$s specified
in ″%2$s″ is not a valid message ID.
The option is ignored.

Where: ″%1$s″ is the invalid message ID. ″%2$s″ is
the option being ignored.

Explanation: The specified option was ignored
because the message ID is not valid.

User Response: Verify the syntax of the option and
the message ID.

CCN8105 A non-empty string is required but
″%1$s″ appears in ″%2$s″. The option
is ignored.

Where: ″%1$s″ is the invalid argument. ″%2$s″ is the
option being ignored.

Explanation: The specified option was ignored
because it was expecting a string with characters in it.

User Response: Verify the syntax of the option.

CCN8106 An option argument is required but is
not found in ″%2$s″. The option is
ignored.%1$s

Where: ″%2$s″ is the option being ignored.

Explanation: The specified option was ignored
because it expected an argument which was not
provided.

User Response: Verify the syntax of the option.

CCN8107 ″%1$s″ specified in ″%2$s″ contains
embedded spaces. The option is
ignored.

Where: ″%1$s″ is the argument containing embedded
spaces. ″%2$s″ is the option being ignored.

Explanation: The specified option was ignored due to
embedded spaces in the argument.

User Response: Verify the syntax of the option and
the value passed as an argument.

CCN8108 The option argument ″%1$s″ specified
in ″%2$s″ is not valid. The option is
ignored.

Where: ″%1$s″ is the invalid argument. ″%2$s″ is the
option being ignored.

Explanation: The specified option was ignored
because the argument specified was not valid.

User Response: Verify the syntax of the option.

CCN8109 The section attributes ″%1$s″ specified
in ″%2$s″ are not valid. The option is
ignored.

Where: ″%1$s″ is the invalid section attributes
argument. ″%2$s″ is the option being ignored.

Explanation: The specified option was ignored
because the section attributes argument was not valid.

User Response: Verify the syntax of the option.

CCN8110 An unnecessary argument ″%1$s″ is
found in ″%2$s″. The option is ignored.

Where: ″%1$s″ is the unnecessary argument. ″%2$s″
is the option being ignored.

Explanation: The specified option was ignored
because an unnecessary argument was specified.

User Response: Verify the syntax of the option.

CCN8111 ″%1$s″ specified in ″%2$s″ requires an
additional option argument. The option
is ignored.

Where: ″%1$s″ is the argument that requires more
information. ″%2$s″ is the option being ignored.

Explanation: The specified option was ignored
because the argument requires more information.

User Response: Verify the syntax of the option.

CCN8120 The AlignAddr value ″%1$s″ is less
than the AlignFile value ″%2$s″.

Where: ″%1$s″ is the AlignAddr value. ″%2$s″ is the
AlignFile value.

Explanation: The AlignAddr value must be greater
than the AlignFile value.

User Response: Change the values.

CCN8121 ″%1$s″ in ″%2$s″ is not a valid object
model name. The option is ignored.

Where: ″%1$s″ is the invalid object model name
specified. ″%2$s″ is the option being ignored.

Explanation: The option specified was ignored
because the specified object model name was not valid.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 169

User Response: Verify the option syntax.

CCN8122 ″%1$s″ is in conflict with ″%2$s″. The
option is ignored.

Where: ″%1$s″ and ″%2$s″ are the conflicting
options.

Explanation: The options specified are not valid if
they are specified together.

User Response: Verify the options and remove or
modify one of them.

CCN8123 The string ″%1$s″ in ″%2$s″ is not a
valid identifier. The option is ignored.

Where: ″%1$s″ is the invalid identifier specified.
″%2$s″ is the option being ignored.

Explanation: The specified option was ignored
because it expected a valid identifier.

User Response: Verify the syntax of the option and
the string specified.

CCN8124 The string ″%1$s″ in ″%2$s″ is not a
valid keyword. The option is ignored.

Where: ″%1$s″ is the invalid string specified. ″%2$s″
is the option being ignored.

Explanation: The specified option was ignored
because it expected a string containing a valid keyword.

User Response: Verify the syntax of the option and
the string specified.

CCN8125 The option argument ″%1$s″ specified
in ″%2$s″ is longer than %3$s
characters. The option is ignored.

Where: ″%1$s″ is the invalid argument. ″%2$s″ is the
maximum length. ″%3$s″ is the option being ignored.

Explanation: The specified option was ignored
because the argument was too long.

User Response: Verify the syntax and constraints of
the option.

CCN8130 The value ″%1$s″ in option ″%2$s″ is
reserved for system use. The value is
not accepted.

Where: ″%1$s″ is the value. ″%2$s″ is the option.

Explanation: The specified value is not accepted
because it is reserved by the system.

User Response: Change the specified value.

CCN8131 The global option directive ″%1$s″
must not be placed inside braces. The
option is ignored.

Where: ″%1$s″ is the option directive being ignored.

Explanation: The specified option directive is a global
directive that applies to the target rather than to
individual files.

User Response: Move the option to the global scope.

CCN8132 The global option directive ″%1$s″ is
not allowed because it modifies a
previous directive. The option is
ignored.

Where: ″%1$s″ is the global option directive being
ignored.

Explanation: The specified option directive is ignored
because it conflicts with a previous directive.

User Response: Verify the meaning of the option
directives specified to see that they do not conflict.

CCN8133 No include path is specified for the
option ″%1$s″. The option is ignored.

Where: ″%1$s″ is the option being ignored.

Explanation: The specified option was ignored
because it expected an include path as a an argument.

User Response: Verify the syntax of the option.

CCN8134 Error in setting option ″%1$s″ for
extension source ″%2$s″.
Configuration value ″%3$s″ has the
wrong format.

Where: ″%1$s″ is the option. ″%2$s″ is the extension
source. ″%3$s″ is the configuration value.

Explanation: This is a warning messsage about
compiler extension source options.

User Response: If you are using that extension, use
the correect option for that extension.

CCN8135 Default value of option ″%1$s″ in the
.ice file has the wrong format ″%2$s″.

Where: ″%1$s″ is the option which has an invalid
default value in the .ice file.

Explanation: The .ice file contains an invalid default
value for the specified option.

User Response: Verify the syntax used to specify
defaults in the .ice file.

170 z/OS V1R2.0 C/C++ Messages

CCN8136 Options ″%1$s″ and ″%2$s″ are in
conflict.

Where: ″%1$s″ and ″$2$s″ are the conflicting options.

Explanation: The specified options cannot be
specified together because they conflict.

User Response: Verify the option settings and remove
or modify one of the conflicting options.

CCN8137 OBJECT_MODE setting ″%1$s″ is not
recognized and is not a valid setting
for the compiler.

Where: ″%1$s″ is the invalid setting.

Explanation: The specified OBJECT_MODE setting is
not valid.

User Response: Verify the valid settings for
OBJECT_MODE.

CCN8138 OBJECT_MODE = 32_64 is not a valid
setting for the compiler.

Explanation: The 32_64 OBJECT_MODE setting is
not supported.

User Response: Verify the valid settings for
OBJECT_MODE.

CCN8139 The global option ″%1$s″ should be
applied to all sources and targets.

Where: ″%1$s″ is the global option.

Explanation: A global option is an option that applies
to all sources and targets rather than just one specified
source file.

User Response: Move the global option so that it
applies to all targets and sources.

CCN8140 ″%1$s″ is not compatible with 64-bit
object mode. The default value ″%2$s″
is being set.

Where: ″%1$s″ is the option that is not valid for 64-bit
object mode. ″%2$s″ is the default value being set.

Explanation: The specified option is not valid for
64-bit object mode, so the specified default is being set.

User Response: Verify the options that are valid for
64-bit object mode or switch to 32-bit object mode.

CCN8141 ″%1$s″ is not compatible with 32-bit
object mode. The default value ″%2$s″
is being set.

Where: ″%1$s″ is the option which is not valid for
32-bit object mode. ″%2$s″ is the default value being
set.

Explanation: The specified option is not valid for
32-bit object mode so the specified default is being set.

User Response: Verify the options that are valid for
32-bit object mode or switch to 64-bit object mode.

CCN8142 ″%1$s″ is not compatible with ″%2$s″.
″%3$s″ is being set.

Where: ″%1$s″ and ″%2$s″ are the incompatible
option values. ″%3$s″ is the setting chosen by the
compiler.

Explanation: The specified option values cannot be
specified together because they are not compatible. A
valid option is being set instead.

User Response: Verify the option values, and either
remove or modify them so that they are compatible.

CCN8143 ″%1$s″ option is specified, but no
floating point traps are being detected.

Where: ″%1$s″ is the option.

Explanation: Floating point traps are enabled but no
traps have been specified.

User Response: Remove the option.

CCN8200 Class ″%1$s″ has base classes with
different object models.

Where: ″%1$s″ is the name of the derived class.

Explanation: The object model deals primarily with the
layout of class hierarchies. All classes in the same
inheritance hierarchy must have the same object model.

User Response: Modify either the base class or the
derived class so that both have the same object model.

CCN8201 Class ″%1$s″ is specified with a
different object model than its base
classes. The object model specified in
its base classes will be used.

Where: ″%1$s″ is the name of the derived class.

Explanation: The object model deals primarily with the
layout of class hierarchies. All classes in the same
inheritance hierarchy must have the same object model.

User Response: Modify either the base class or the
derived class so that both have the same object model.

CCN8202 Class ″%1$s″ has different object
model between its formal template
class and its base classes.

Where: ″%1$s″ is the name of the instance class.

Explanation: The object model deals primarily with the
layout of class hierarchies. All classes in the same
inheritance hierarchy must have the same object model.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 171

Any formal templates (primary templates or partial
specializations) must also have the same object model.

User Response: Modify either the base class or the
formal template class so that both have the same object
model.

CCN8400 ″%1$s″ is undefined. The delete
operator will not call a destructor.

Where: ″%1$s″ is the class.

Explanation: The class is declared but not defined so
a constructor will not be called when the object is
deleted at this point.

User Response: Define the class.

CCN8401 The address of the destructor ″%1$s″
cannot be taken.

Where: ″%1$s″ is the destructor.

Explanation: An attempt has been made to take the
address of a destructor.

User Response: Change the code to not take the
address of the destructor.

CCN8402 The explicit reference to the destructor
″%1$s″ can only be used in an explicit
destructor call.

Where: ″%1$s″ is the destructor.

Explanation: Destructors do not have names and can
only be referred to in declarations and in
pseudo-destructor calls.

User Response: Remove the reference to the
destructor.

CCN8403 An expression with type
pointer-to-member function must be
bound to an object or a pointer to an
object when it is used with the
function call operator ().

Explanation: A pointer-to-member function must have
an object to refer to when calling the function.

User Response: Change the code so that the function
is being called on an object or a pointer to an object.

CCN8404 All the arguments must be specified
for ″%1$s″ because its default
arguments have not been checked yet.

Where: ″%1$s″ is the function.

Explanation: The function is recursive and is using
the default arguments. Because they have not been
processed yet, they must be specified.

User Response: Specify the parameters to the
function call.

CCN8405 An empty initializer list cannot be used
to initialize an unbounded array.

Explanation: The array is unbounded and its size is
not known so an empty initializer list cannot be used.

User Response: Specify the size of the array or use a
non-empty initializer list.

CCN8406 Build with the ″%1$s″ compiler option
to extend the scope of the
for-init-statement declaration.

Where: ″%1$s″ is the compiler option that can extend
the scope of the variables declared in the for statement.

Explanation: Informational message about the option
for extending scope of the variable in the for statement.

User Response: See the primary message.

CCN8407 The local macro ″%1$s″ is not visible
in the current source.

Where: ″%1$s″ is the macro.

Explanation: Informational message about a local
macro.

User Response: See the primary message.

CCN8408 The condition declaration cannot have
type ″%1$s″.

Where: ″%1$s″ is the type.

Explanation: The type of the variable declared in the
condition is not valid.

User Response: Change the type of the declaration in
the condition to bool.

CCN8409 The condition declaration cannot be
initialized with a brace list initializer.

Explanation: A declaration in a condition cannot be
initialized with a brace list.

User Response: Change the initializer so that it is not
in brace list format.

CCN8410 The left side of the ″%1$s″ operator
must be an lvalue.

Where: ″%1$s″ is the operator.

Explanation: The operand on the left side is not an
object that can be assigned a value.

User Response: Change the left operand to an object
that can be assigned a value.

172 z/OS V1R2.0 C/C++ Messages

CCN8411 A dynamic cast is present, but the
correct RTTI option is not specified.

Explanation: The compilation unit must be compiled
with RTTI enabled.

User Response: Use the correct RTTI compiler
option, or remove the dynamic cast.

CCN8412 A typeid is present, but the correct
RTTI option is not specified.

Explanation: The compilation unit must be compiled
with RTTI enabled.

User Response: Use the correct RTTI compiler
option, or remove the type ID.

CCN8413 The ″__alignof″ operator cannot be
applied to a bit-field.

Explanation: An attempt to use the __alignof operator
on a bit-field has been made.

User Response: Remove the use of the __alignof
operator.

CCN8600 ″%1$s″ operator cannot be overloaded.

Where: ″%1$s″ is the operator.

Explanation: The attempted operator overload is not
valid.

User Response: Change the declaration to overload a
different operator.

CCN8601 Forward declaration of the
enumeration ″%1$s″ is not allowed.

Where: ″%1$s″ is the enumeration.

Explanation: Enumerations cannot have forward
declarations.

User Response: Define the enumeration before
attempting to use an elaboration of the enumeration.

CCN8602 The first non-matching token was
encountered on line %1$s, column
%2$s. A project cannot contain more
than one definition of a class unless
each definition consists of the same
sequence of tokens.

Where: ″%1$s″ is the line number. ″%2$s″ is the
column number.

Explanation: Informational message indicating the first
token that differs in the two class definitions.

User Response: See the primary message.

CCN8701 The ″#pragma datamodel″ stack is
empty. The pragma is ignored.

Explanation: An attempt has been made to restore
the previous pragma setting, but this is the first instance
of the pragma.

User Response: Remove the pragma.

CCN8702 Invalid syntax for #pragma datamodel.

Explanation: The compiler has detected an invalid
#pragma datamodel syntax.

User Response: Correct the syntax.

CCN8703 #pragma datamodel(LLP64 | P128)
seen without matching #pragma
datamodel(pop).

Explanation: At the end of compilation there was an
extra #pragma datamodel on the stack.

User Response: Ensure that all #pragma datamodel
directives have a matching #pragma datamodel(pop).

CCN8704 The base class has a different data
model than this derived class.

Explanation: Base and derived classes must have
identical data models.

User Response: Change the data model of one of the
classes.

CCN8705 Cannot initialize a static __ptr64 with a
__ptr128 value.

Explanation: A __ptr64 variable is being initialized
with a constant value when the storage model indicates
such values are __ptr128s.

User Response: Use a different initialization value or
a different storage model.

CCN8706 This message is no longer used.

CCN8707 The #pragma map has been applied to
function ″%1$s″, which has internal
linkage.

Where: %1$s is the function name.

Explanation: An internal linkage function cannot be
mapped.

User Response: Change the function or remove the
pragma.

Chapter 3. z/OS C/C++ Compiler Return Codes and Messages 173

CCN8708 The divisor for the modulus or division
operator cannot be zero.

Explanation: The result of the calculation is
undefined.

User Response: Change the value of the divisor or
change the operator.

CCN8709 The #pragma ″%1$s″ directive must
occur before the first C++ statement in
program; The directive is ignored.

Where: %1$s is the pragma name.

Explanation: The pragma must precede any C++
statement in the program.

User Response: Move the pragma directive before
any C++ statement.

Note: The following error messages may be produced by the compiler if the message file is itself invalid.
SEVERE ERROR EDC0090: Unable to open message file &1.
SEVERE ERROR EDC0091: Invalid offset table in message file &1.
SEVERE ERROR EDC0092: Message component &1s not found.
SEVERE ERROR EDC0093: Message file &1 corrupted.
SEVERE ERROR EDC0094: Integrity check failure on msg &1
SEVERE ERROR EDC0095: Bad substitution number in message &1
SEVERE ERROR EDC0096: Virtual storage exceeded
ERROR: Failed to open message file. Reason &1.
ERROR: Unable to read message file. Reason &1.
ERROR: Invalid offset table in message file &1.
ERROR: Message component &1s not found.
ERROR: Message file &1 corrupted.
ERROR: Integrity check failure on msg &1 — retrieved &2.
ERROR: Message retrieval disabled. Cannot retrieve &1.
INTERNAL ERROR: Bad substitution number in message &1.

Note: The previous messages are only generated in English.

174 z/OS V1R2.0 C/C++ Messages

Chapter 4. Utility Messages

This chapter contains information about the DSECT, DLLRNAME, and CXXFILT utility
messages, and should not be used as programming interface information. For the
localedef, iconv, and genxlt utility messages, refer to the z/OS Language
Environment Debugging Guide.

Other Return Codes and Messages
See the z/OS Language Environment Debugging Guide for messages and return
codes for the following:

v Prelinker and Object Library Utility

v Run-time messages and return codes

v localedef utility

v genxlt utility

v iconv utility

v System Programmer C (SP C)

DSECT Utility Messages
The following section describes return codes and messages that are issued by the
DSECT utility.

Return Codes
The DSECT utility issue the following return codes:

Table 4. Return Codes from the DSECT Utility
Return Code Meaning
0 Successful completion.
4 Successful completion, warnings issued.
8 DSECT Utility failed, error messages issued.
12 DSECT Utility failed, severe error messages issued.
16 DSECT Utility failed, insufficient storage to continue processing.

Messages
The messages that the DSECT utility issues have the following format:

EDCnnnns text <s> where:

nnnn error message number

s error severity

00 informational message

10 warning message

30 error message

40 severe error message

&s substitution variable

The DSECT utility issues the following messages:

© Copyright IBM Corp. 1996, 2001 175

EDC5500 10 Option %s is not valid and is ignored.

Explanation: The option specified in the message is
not valid DSECT Utility option or a valid option has
been specified with an invalid value. The specified
option is ignored.

User Response: Rerun the DSECT Utility with the
correct option.

EDC5501 30 No DSECT or CSECT names were
found in the SYSADATA file.

Explanation: The SECT option was not specified or
SECT(ALL) was specified. The SYSADATA was
searched for all DSECTs and CSECTs but no DSECTs
or CSECTs were found.

User Response: Rerun the DSECT Utility with a
SYSADATA file that contains the required DSECT or
CSECT definition.

EDC5502 30 Sub option %s for option %s is too
long.

Explanation: The sub option specified for the option
was too long and is ignored.

EDC5503 30 Section name %s was not found in
SYSADATA File.

Explanation: The section name specified with the
SECT option was not found in the External Symbol
records in the SYSADATA file. The C structure is not
produced.

User Response: Rerun the DSECT Utility with a
SYSADATA file that contains the required DSECT or
CSECT definition.

EDC5504 30 Section name %s is not a DSECT or
CSECT.

Explanation: The section name specified with the
SECT option is not a DSECT or CSECT. Only a DSECT
or CSECT names may be specified. The C structure is
not produced.

EDC5505 00 No fields were found for section %s,
structure is not produced.

Explanation: No field records were found in the
SYSADATA file that matched the ESDID of the specified
section name. The C structure is not produced.

EDC5506 30 Record length for file ″%s″ is too small
for the SEQUENCE option, option
ignored.

Explanation: The record length for the output file
specified is too small to enable the SEQUENCE option
to generate the sequence number in columns 73 to 80.

The available record length must be greater than or
equal to 80 characters. The SEQUENCE option is
ignored.

EDC5507 40 Insufficient storage to continue
processing.

Explanation: No further storage was available to
continue processing.

User Response: Rerun the DSECT Utility with a
larger region (MVS).

EDC5508 30 Open failed for file ″%s″: %s

Explanation: This message is issued if the open fails
for any file required by the DSECT Utility. The file name
passed to fopen() and the error message returned by
strerror(errno) is included in the message.

User Response: The message text indicates the
cause of the error. If the file name was specified
incorrectly on the OUTPUT option, rerun the DSECT
Utility with the correct file name.

EDC5509 40 %s failed for file ″%s″: %s

Explanation: This message is issued if any error
occurs reading, writing or positioning on any file by the
DSECT Utility. The name of the function that failed
(Read, Write, fgetpos, fsetpos), file name and text from
strerror(errno) is included in the message.

User Response: This message may be issued if an
error occurs reading or writing to a file. This may be
caused by an error within the file, such as an I/O error
or insufficient disk space. Correct the error and rerun
the DSECT Utility.

EDC5510 40 Internal Logic error in function %s

Explanation: The DSECT Utility has detected that an
error has occurred while generating the C structure.
Processing is terminated and the C structure is not
produced.

User Response: This may be caused by an error in
the DSECT Utility or by incorrect input in the
SYSADATA file. Contact your system administrator.

EDC5511 10 No matching right parenthesis for %s
option.

Explanation: The option specified had a sub option
beginning with a left parenthesis but no right
parenthesis was present.

User Response: Rerun the DSECT Utility with the
parenthesis for the option correctly paired.

176 z/OS V1R2.0 C/C++ Messages

EDC5512 10 No matching quote for %s option.

Explanation: The OUTPUT option has a sub option
beginning with a single quote but no matching quote
was found.

User Response: Rerun the DSECT Utility with the
quotes for the option correctly paired.

EDC5513 10 Record length too small for file ″%s″.

Explanation: The record length for the Output file
specified is less than 10 characters in length. The
minimum available record length must be at least 10
characters.

User Response: Rerun the DSECT Utility with an
output file with a available record length of at least 10
characters.

EDC5514 30 Too many sub options were specified
for option %s.

Explanation: More than the maximum number of sub
options were specified for the particular option. The
extra sub options are ignored.

EDC5515 00 HDRSKIP option value greater than
length for section %s, structure is not
produced.

Explanation: The value specified for the HDRSKIP
option was greater than the length of the section. A

structure was not produced for the specified section.

User Response: Rerun the DSECT Utility with a
smaller value for the HDRSKIP option.

EDC5516 10 SECT and OPTFILE options are
mutually exclusive, OPTFILE option is
ignored

Explanation: Both the SECT and OPTFILE options
were specified, but the options are mutually exclusive.

User Response: Rerun the DSECT Utility with either
the SECT or OPTFILE option.

EDC5517 10 Line %i from ″%s″ does not begin with
SECT option

Explanation: The line from the file specified on the
OPTFILE option did not begin with the SECT option.
The line was ignored.

User Response: Rerun the DSECT Utility without
OPTFILE option, or correct the line in the input file.

EDC5518 10 setlocale() failed for locale name ″%s″.

Explanation: The setlocale() function failed with the
locale name specified on the LOCALE option. The
LOCALE option was ignored.

User Response: Rerun the DSECT Utility without
LOCALE option, or correct the locale name specified
with the LOCALE option.

DLLRNAME Utility Messages

Return Codes
The DLLRNAME utility returns the following return codes:

Table 5. Return Codes from the DLLRNAME Utility
Return Code Meaning
0 Processing successful.
8 Invalid input arguments
16 Any other failure

Messages
The DLLRNAME utility issues the following messages:

EDC6200E An invalid argument list was specified.

Explanation: The parameter list specified is not valid.
See the documentation for DLLRNAME in the z/OS
C/C++ User’s Guide.

User Response: Ensure that you have included at
least one application load module or DLL and that you
have specified the options correctly and with the correct
syntax.

EDC6201S A failure occurred accessing &.

Explanation: An unexpected error occurred when
DLLRNAME tried to access the input file.

User Response: Look up the subsequent perror()
message and perform the Programmer Response. For
example, a file not found error may indicate that you
need to fix the input file name. Otherwise, report the
problem to IBM Service.

Chapter 4. Utility Messages 177

EDC6202S A DLL name & is already imported

Explanation: You have specified a DLL to rename.
The new name chosen matches a DLL already in the
import list.

User Response: Either change the new name to a
name not already imported or first rename the DLL that
has the chosen name.

EDC6203E A DLL name was specified more than
once for a rename

Explanation: You have specified a DLL more than
once in the oldname=newname list. The following are

examples of invalid input: A=B A=C or A=B B=C or A=A or
A=C B=C.

User Response: Fix the argument list so that the DLL
appears only once.

CXXFILT Utility Messages

Return Codes
The CXXFILT utility returns the following return codes:

Table 6. Return Codes from the CXXFILT Utility
Return Code Meaning
0 Processing successful: CXXFILT processing completed successfully.
4 A warning was issued and a result was generated.
8 CXXFILT Utility failed, possibly due to a read error.
16 CXXFILT Utility failed.

Messages
The CXXFILT utility issues the following messages:

CCN9500 Cannot open the following file: @1 --
ignored.

Explanation: The specified file cannot be opened for
reading or does not exist.

User Response: Ensure that the file exists and is
readable.

CCN9501 Cannot continue reading input.

Explanation: A read error occurred while reading the
input stream.

User Response: Ensure that the input stream is still
available and try again.

CCN9502 No options specified after (.

Explanation: A (indicating start of options was
encountered but no options followed.

User Response: Ensure that the input stream is still
available and try again.

CCN9503 An invalid option (@1) was specified --
ignored.

Explanation: An invalid option was specified.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for valid options.

CCN9504 Option (@1) was specified with too few
suboptions. @2 suboption(s) required
-- ignored.

Explanation: Not all the required suboptions were
supplied.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for the number of required
suboptions.

CCN9505 Option (@1) was specified with too
many suboptions. @2 suboption(s)
required -- ignored.

Explanation: More suboptions were supplied than
what is allowed by this option.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for the number of required
suboptions.

178 z/OS V1R2.0 C/C++ Messages

CCN9506 Option (@1) requires a positive
suboption -- ignored.

Explanation: This error occurred because the
specified suboptions for this option is invalid. Only
positive suboptions are allowed.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for the allowed suboptions.

CCN9507 Internal Error. Contact your IBM
representative.

User Response: Please report this problem.

CCN9508 No negative form for option @1 --
ignored.

Explanation: The specified option does not have a
negative form.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for valid options.

CCN9509 An incomplete option (@1) has been
specified. -- ignored

Explanation: The specified option is incomplete.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for valid options.

Chapter 4. Utility Messages 179

180 z/OS V1R2.0 C/C++ Messages

Chapter 5. z/OS C/C++ Application Support Class Library and
Collection Class Library Version 5 Messages

This chapter contains information about the Version 5 Application Support Library
and Collection Class Library messages that are included with z/OS V1R2 IBM Open
Class and should not be used as programming interface information.

The following information shows the format for these messages:

Message Format: CLEnnnn text <&n> where:

nnnn error message number

text message which appears on the screen

&n IBM Open Class substitution variable

CLE1000 The ″&1″ expression must be true, but
it evaluated to false.

Where: &1 is the expression

User Response: Check the variables in the
expression.

CLE1001 Out of memory or unable to allocate
memory.

Explanation: The attempt to obtain memory in order
to satisfy the current library request has failed.

User Response: Make sure that there is enough
memory in the region to run the program. You might
need to specify the run-time option HEAP(,,,FREE,,) to
prevent the program from running out of memory.

CLE1002 The class or the called member
function is not supported.

Explanation: The IInvalidRequest exception is thrown
because the user application called a member function
of the class or tried to instantiate an instance of a class
which is supported only in an z/OS or OS/390 UNIX
Environment.

User Response: Change your application logic to
avoid calling the member function or creating an
instance of class which is not supported in a z/OS or
OS/390 non-UNIX Environment.

CLE1003 A system exception condition was
detected.

Explanation: The ISystemErrorInfo exception is
thrown to indicate that an operating system call resulted
in an error condition. Typically, this exception is thrown
in IDLLModule routines, for example,
IDLLModule::close().

User Response: Check for IDLLModule operations
used in the application.

CLE1004 A protected function of a class was
called; it can produce unpredictable
results.

Explanation: A user application called a protected
function of a class. This can result in unpredictable
behavior.

User Response: Remove the call to the protected
function of the class.

CLE1100 The file system operation was
cancelled.

Explanation: A user application cancelled a file
system operation through the IFileOperationCancelled
exception or this exception is thrown when the
reportProgress() function in the IFileOperation subclass
is false or when a file system operation is interrupted by
a signal.

User Response: If you intended to stop the operation,
no response is needed. Otherwise, note the location of
the problem and contact IBM C++ Service and Support.

CLE1101 This operating system does not
support this function.

Explanation: A user application has called a function
that is not supported on this operating system.

User Response: Do not use the function in question.

CLE1102 A file system volume cannot be
deleted.

Explanation: The IInvalidRequest exception is thrown
because you tried to delete or move a volume.

User Response: Do not use the deleteSelf or moveTo
functions on volumes.

© Copyright IBM Corp. 1996, 2001 181

CLE1103 A file system volume cannot be
renamed.

Explanation: The IInvalidRequest exception is thrown
because you tried to rename a volume.

User Response: Do not use the setName function to
rename volumes.

CLE1104 The file system object is invalid.

Explanation: The IEntityInvalid exception is thrown
because of an attempt to perform an operation in an
IFileSystemEntity object which does not point to a valid
on-disk entity.

User Response: Find out the location of the problem
and remove reference to the invalid file system entity.

CLE1105 The file system entity was not found.

Explanation: A user application has referenced a file
system entity which was not found.

User Response: Find out the location of the problem
and remove reference to the non-existent file system
entity.

CLE1106 The file system entity already exists.

Explanation: A user application has attempted to
create a file system entity that already exists.

User Response: Find out the location of the problem
and remove reference to the file system entity in
question.

CLE1107 The volume is offline.

Explanation: The IVolumeOffline exception is thrown
because of an attempt to operate on an offline or
ejected volume.

User Response: Find out the location of the problem
and remove reference to the offline volume.

CLE1108 The file name is invalid.

Explanation: The IInvalidParameter exception is
thrown because the path name specified by user
application is invalid.

User Response: Find out the location of the problem
and remove the reference to the invalid file name.

CLE1109 The directory is not empty.

Explanation: The directory path name specified by
user application is not empty.

User Response: Make sure that the directory path
name is empty before it is deleted.

CLE1110 The file system is in use.

Explanation: The IEntityInUse exception is thrown
because an attempt has been made to move, delete or
operate on an entity which is currently in use.

User Response: Make sure that the file system entity
is not used before an operation is performed on it.

CLE1111 Attempted to read beyond the end of
file.

Explanation: The end of the file has been
encountered prematurely.

User Response: Make sure that file position offset
used does not reach beyond the end of file.

CLE1112 The file system entity is not the correct
type.

Explanation: The IEntityTypeMismatch exception
indicates an attempted assignment to the wrong type of
entity object by either a user application or
typeSafeAssign member function in the
IFileSystemEntity subclass.

User Response: If you intended to use this exception,
no response is needed. Otherwise, check that the
correct type of a file system entity is used in any of the
following: typeSafeAssign member function,
IFileSystemEntity subclass constructor, or
IFileSystemEntity = operator.

CLE1113 &1 is not a file.

Explanation: The IEntityTypeMismatch exception
indicates an attempted assignment to the wrong type of
a file by either user application or typeSafeAssign
member function in the IFileSystemEntity subclass.

User Response: If you intended to use this exception,
no response is needed. Otherwise, check that the
correct type of a file is used in any of the following:
typeSafeAssign member function, IFile constructor, or
IFile = operator.

CLE1114 &1 is not a directory.

Explanation: The IEntityTypeMismatch exception
indicates that an attempted assignment to the wrong
type of directory was made by either the user
application or the typeSafeAssign member function in
the IFileSystemEntity subclass.

User Response: If you intended to use this exception,
no response is needed. Otherwise, check that the
correct type of a directory is used in the typeSafeAssign
member function, IDirectory constructor, or IDirectory =
operator.

182 z/OS V1R2.0 C/C++ Messages

CLE1115 &1 is not a volume.

Explanation: The IEntityTypeMismatch exception
indicates that an attempted assignment to the wrong
type of volume was made by either the user application
or the typeSafeAssign member function in the
IFileSystemEntity subclass.

User Response: If you intended to use this exception,
no response is needed. Otherwise, check that the
correct type of volume is used in the typeSafeAssign
member function, IVolume constructor, or IVolume =
operator.

CLE1116 The ″&1″ value is not supported on
this platform.

Explanation: The IInvalidRequest exception is thrown
because the value used in the parseName() routine is
not recognized on this platform.

User Response: Make sure that you are using the
correct parameter in the parseName() routine.

CLE1117 Object ″&1″ cannot be found.

Explanation: An exception is thrown because the
value used in the parseName() routine is not recognized
as a valid name.

User Response: Make sure that you are using the
correct parameter in the parseName() routine.

CLE1200 The DBCS string is invalid because a
shift-out or shift-in character is
missing.

Explanation: DBCS characters in the MBCS string are
not enclosed in shift-out and shift-in characters. Either a
shift-out or a shift-in character is missing.

User Response: Enclose DBCS characters in an
MBCS string in shift-out and shift-in characters.

CLE1201 An error occurred while converting an
MBCS string to a wide character string.

Explanation: DBCS characters in the MBCS string are
not enclosed in shift-out and shift-in characters. Either a
shift-out or a shift-in character is missing.

User Response: Enclose DBCS characters in an
MBCS string in shift-out and shift-in characters.

CLE1202 Data overflow error.

Explanation: A decimal data overflow was detected
and the IDecimalDataError exception was thrown.
Overflow errors can occur while constructing an
IBinaryCodedDecimal or IDecimalUtil object from a
number or while performing arithmetic operations on
these objects.

User Response: Change the decimal constant used in
the IBinaryCodedDecimal or IDecimalUtil class so that it
does not exceed the maximum value.

CLE1204 Attempt to allocate an IString that is
too big.

Explanation: The IInvalidRequest exception indicates
that an IString request caused an overflow. An
exception is thrown when IBuffer::checkAddition or
IBuffer::checkMultiplication detects an overflow.
Typically, this occurs during object construction or
during an operation that grows an underlying IBuffer
object.

User Response: Check the usage of IString objects in
your application and make sure that they are within
acceptable range.

CLE1205 Attempt to index beyond the end of a
const IString.

Explanation: The IInvalidRequest exception was
thrown because the value of the IString designator was
larger than the dimension declared for an IString array.

User Response: Increase the size of the IString array.
Make sure you include space for the terminating null
character.

CLE1206 Text offset out of bounds.

Explanation: The IInvalidParameter exception is
thrown because the offset of the next text boundary
exceeded the length of the text.

User Response: Make sure that the offset where
scanning begins, which is specified as a parameter,
does not exceed the length of the text. Check the usage
of the ITextBoundary class.

CLE1207 State not initialized.

Explanation: The IInvalidParameter exception is
thrown because the internal Transcoding state has not
been initialized.

User Response: Make sure that the conversion
functions which reset internal Transcoding states are
used correctly.

CLE1208 State not initialized or buffer range
error.

Explanation: The IInvalidParameter exception is
thrown because either an internal Transcoding state has
not been initialized or the string buffer range is
incorrect.

User Response: Make sure that conversion functions
have correct parameters.

Chapter 5. z/OS C/C++ Application Support Class Library and Collection Class Library Version 5 Messages 183

CLE1300 Unsupported member function of
IThread class called.

Explanation: The IInvalidRequest exception is thrown
because a user application has called a member
function of the IThread class which is not supported on
this platform.

User Response: Change your application logic to
avoid calling this member function.

CLE1301 The specified thread ID is not valid.

Explanation: The IInvalidParameter exception is
thrown because a user application passed an invalid
thread ID to the IThread class.

User Response: Ensure that a thread ID that is valid
for started threads has been passed to IThread class.

CLE1302 The start() function is not valid
because the specified thread is already
started.

Explanation: The IInvalidRequest exception is thrown
because a user application called the start() function on
the IThread class, but the thread was already running.

User Response: Check your application to ensure that
the start() function is called after the previous function
dispatched on the IThread has been completed.

CLE1303 Unable to acquire a semaphore to
satisfy the setLock() request.

Explanation: The IOutOfSystemResource exception is
thrown because no more semaphore resource is
available to complete the user request. Most likely the
system limit for the number of semaphores has been
exceeded.

User Response: Free up any unused semaphore
resources that your application acquired, and try the
request again. If the problem persists, contact your
system representative to free the unused semaphore
resources.

CLE1304 An attempt was made to allocate a
keyed thread variable beyond the
library’s limit of 16.

User Response: Check your application to ensure that
the number of keyed thread variables is below the
maximum limit.

CLE1305 The thread is not started.

Explanation: The IInvalidRequest exception is thrown
if the thread is invalid or the thread has not been
started. This typically occurs when
INonGUIThread::resume() cannot resume executing a
thread for the previously stated reasons.

User Response: Check that started threads have valid
thread IDs and that threads in use have been started.

CLE1306 The thread is not in a suspended state.

Explanation: The IAccessError exception is thrown if
the thread is invalid or not in the suspended state. This
typically occurs when INonGUIThread::resume() cannot
resume executing a thread for the previously stated
reasons.

User Response: Check that started threads have valid
thread IDs and that threads have been suspended
before making a call to resume theme.

CLE1400 The data on the stream is not in the
expected format.

Explanation: The IInvalidDataOnStream exception is
thrown because invalid data was read from
IDataStream.

User Response: Make sure that IDataStream contains
valid data.

CLE1401 An attempt was made to read past the
end of the stream.

Explanation: The IEndOfStream exception is thrown
because reading was performed past the end of
IDataStream.

User Response: Check for the end of IDataStream
before reading IDataStream data.

CLE1402 An invalid stream encoding was
specified.

Explanation: The IInvalidParameter exception is
thrown because the incorrect type of stream encoding
was used. This typically occurs when an
IDataStream::createMemoryStream() member function
uses an invalid type of stream encoding. Valid encoding
types are: kInteroperableBinary, kRawBinary, and
kDebug.

User Response: Make sure that valid stream
encoding is specified.

CLE1403 An unknown type was encountered on
the stream.

Explanation: The IUnknownTypeOnStream exception
is thrown because an object with an unknown type was
encountered while reading from IDataStream. One
situation that can cause this error is that the dynamic
link library, or shared library, with the class
implementation for the type is not loaded in the process
that is reading from the stream.

User Response: Make sure that valid source is
streamed.

184 z/OS V1R2.0 C/C++ Messages

CLE1404 An object previously seen on the
stream was reallocated.

Explanation: The IAddressAlreadyInContext exception
is thrown because there is an internal inconsistency in
the handling of aliased objects in the data stream. This
problem could be caused by corruption of the stream
data, programming errors in the application, or defects
in the streaming classes. Typically, the exception is
thrown while reading from or writing C++ objects to
IDataStream.

User Response: Make sure that valid source is
streamed, and that valid data is being read from or
written to IDataStream.

CLE1405 The context number is out of range.

Explanation: The IInvalidContextNumber exception is
thrown because an object alias read from IDataStream
refers to data that does not exist. This is an internal
consistency check; a failure generally indicates that the
stream data has been corrupted, or that some other
serious programming error has occurred.

User Response: Make sure that valid source is
streamed, and that valid data is being read from or
written to IDataStream.

CLE1500 Transcoding buffer range is invalid.

Explanation: The IInvalidParameter exception
indicates that the string range is invalid. Typically, this
exception appears in the ITranscoder::toUnicode() or
ITranscoder::fromUnicode() member function to indicate
that either a foreign code set or a Unicode parameter
pointer is NULL, or that the pointer to end of the buffer
range from_end or to_limit points to an invalid location,
for example, from_end - from < 0.

User Response: Make sure that transcoders used
contain valid transcoding buffer range.

CLE1501 Transcoding flush buffer is invalid.

Explanation: IInvalidParameter exception is thrown in
ITranscoder::flush() member function to indicate that
output conversion buffer points to either a NULL location
or that the range of the output conversion buffer is
invalid (e.g. (to_limit-to) < 0). Note: ITranscoder::flush()
member function does nothing in ITranscoder base
class, it simply checks for valid parameters.

User Response: Make sure that parameters in
ITranscoder::flush() function are correct.

CLE1503 Transcoder for charset or locale
specified is not installed.

Explanation: The IObjectNotFound exception
indicates that the transcoder used either contains an
invalid locale ID or that the character set for the given
transcoder is invalid.

User Response: Check for valid transcoders specified
in ITranscoder objects.

CLE1505 An input byte does not belong to the
input codeset.

Explanation: The IInvalidRequest exception is thrown
to indicate that an illegal character was used for a given
codeset. This typically occurs when input buffer
parameters in the ITranscoder::toUnicode() or
ITranscoder::fromUnicode() member function contain
invalid characters for the codesets used.

User Response: Make sure that the transcoding
buffers contain valid characters for codesets used.

CLE1506 Incomplete character or shift sequence
at the end of the input buffer.

Explanation: The IInvalidRequest exception is thrown
to indicate that the input transcoding buffer in the
ITranscoder::toUnicode() or ITranscoder::fromUnicode()
member function ends with an incomplete character or
shift sequence. Conversion stops after the previous
successfully converted bytes and the exception is
thrown.

User Response: Make sure that the transcoding
buffers contain valid characters for the codesets used.

CLE1600 The object cannot be located.

Explanation: The IObjectNotFound exception
indicates that an operation failed because it was unable
to locate a requested object, for example, an invalid file
system object, file or directory.

User Response: If you intended to use this exception,
no response is required. Otherwise, check the usage of
incorrect objects in your application.

CLE1601 The name is invalid in this context.

Explanation: The IInvalidName exception indicates
that an invalid name, such as a file name or a network
resource name, was used for an object.

User Response: If you intended to use this exception,
no response is required. Otherwise, check for usage of
proper names in your application.

CLE1602 The operation cannot proceed, but
might be able to continue.

Explanation: The ICannotProceed exception indicates
a situation prohibiting the application from completing an
operation.

User Response: If you intended to use this exception,
no response is required.

Chapter 5. z/OS C/C++ Application Support Class Library and Collection Class Library Version 5 Messages 185

CLE1603 The object already exists.

Explanation: The IAlreadyExists exception indicates
that an operation could not create the requested object
because the name of the object or its location is already
used. This exception is typically used in file system
operations.

User Response: Check the object creation operations
in your application and make sure that objects that you
want to create do not already exist.

CLE1604 The container must be empty.

Explanation: The IMustBeEmpty exception was
thrown to indicate that an operation could not be
performed on a container because the container was
not empty. This typically occurs when you are trying to
remove a directory which is not empty.

User Response: Check for container operations used
in the application.

CLE1800 Process Invalid path: no permission to
execute.

Explanation: The IInvalidRequest exception indicates
that either the external process you are trying to start
does not have permission to execute or the directory of
the process you are trying to start does not have
permission to search.

User Response: Check that the
IExternalProcess::start() function uses valid process
locations.

CLE1801 Invalid process path: not a regular file.

Explanation: The IInvalidRequest exception indicates
that the process you are trying to start is not a regular
file.

User Response: Check that the
IExternalProcess::start() function uses valid process
locations.

CLE1802 Process ″&1″ already started, cannot
start ″&2″.

Explanation: The IInvalidRequest exception indicates
that a process cannot be started because it has already
been started.

User Response: Check for already started processes
that you are attempting to start in your application.
Check the usage of IExternalProcess class.

CLE1803 Setting process path failed.

Explanation: The IInvalidRequest exception is thrown
because an external process path was being set while
the process was running. This typically occurs in a call
using the IExternalProcess::start() or

IExternalProcess::setPa th() functions to a process that
is already running.

User Response: Make sure that you are not
attempting to change the path name of a process that is
already running.

CLE1804 Failed to set process environment.

Explanation: The IInvalidRequest exception indicates
that an external process environment was being set
while the process was running. This typically occurs in a
call using the IExternalProcess::setEnvironment()
function to a process that is already running.

User Response: Make sure that you are not
attempting to change the environment of a process that
is already running.

CLE1806 Cannot start the process because it is
already running.

Explanation: The IInvalidRequest exception indicates
that a process cannot be started because it has already
been started. This typically occurs when trying to start
the process again using the IExternalProcess::start()
function.

User Response: Check for processes that are already
started that you are attempting to start in your
application with the IExternalProcess::start() function.

CLE1810 Unknown priority for the ″&1″ process.

Explanation: The IExternalProcess::getPriority() call
returned a priority that is not mappable to a standard
Open Class Library process priority class.

User Response: Avoid calling
IExternalProcess::getPriority() for this process, because
its priority is not recognized by the IBM Open Class
Library.

CLE1811 Could not start the ″&1″ process.
Error=&2.

Explanation: The IInvalidParameter exception
indicates that an error occurred while trying to start a
process. This happened in a IExternalProcess::start()
call.

User Response: Check whether you are trying to start
a valid process that has not already been started.
Check that you are using the correct path name.

CLE1813 The ″&1″ operation is not supported on
this platform.

Explanation: This exception typically occurs in
IExternalProcess::setPriority() or
IExternalProcess::getPriority() calls, which are not
supported on certain platforms.

186 z/OS V1R2.0 C/C++ Messages

User Response: Change your application logic to
avoid calling the unsupported function.

CLE1814 Error ″&1″ occurred while waiting on
process ″&2″ to die.

Explanation: The IAccessError exception indicates
that an error occurred while waiting for a process to die.
This typically occurs in an IExternalProcess::wait() call.

User Response: Make sure that you are waiting for a
valid process to die.

CLE1815 The program ″&1″ could not be
located.

Explanation: The IInvalidParameter exception
indicates that the external process you are trying to start
was not found. This typically occurs in a call to the
IExternalProcess::start() function.

User Response: Make sure that you are starting a
valid external process with the correct path name.
Ensure that your application has search permission on
the process path name.

CLE1816 Path ″&1″ is not a valid host platform
path.

Explanation: The IInvalidParameter exception
indicates that the path name specified in the
IExternalProcess::start() call is not a valid path name for
an external process.

User Response: Make sure that the path name in the
IExternalProcess::start() call is correct.

CLE2000 IThreadLocal Storage objects do not
support re-adoption.

Explanation: The IInvalidRequest exception indicates
that the calling thread has already stored an object, and
this object does not allow resetting of the data value.
The ability to reset is indicated during the construction
of the IThreadLocalStorage object.

User Response: Make sure that you are not trying to
repeatedly set the storage for a calling thread when the
object does not allow resetting of the data value.

CLE2001 Invalid advancing request for locale
key iterator.

Explanation: The IInvalidRequest exception indicates
that the last locale key has been consumed and that
advancing to the next locale key cannot be performed.

User Response: Avoid advancing the locale key past
the limit when using a ++ operator in ILocaleKey.

CLE2002 The specified locale is not installed.

Explanation: The IInvalidRequest exception indicates
that an error occurred while setting the application’s
locale. Failure to set the locale can be a result of an
incorrect locale value or an incorrect category value.

User Response: Make sure that the locale is correct
for strings used in ICollation functions or
IDecimalFormat::format().

CLE2003 Invalid locale identifier.

Explanation: The IInvalidParameter exception
indicates that the locale identifier used in the application
is not valid for this operating system.

User Response: Make sure that locale identifiers used
in ILocaleKey objects and operations are correct.

CLE2004 Locale supported but not installed.

Explanation: The IInvalidRequest exception indicates
that the matched locale is supported but not installed on
the machine. Typically occurs in calls to ILocaleKey
constructor, ILocaleKey::setHostID() or
ILocaleKey::setPOSIXID() functions.

User Response: Make sure that the locale identifiers
specified in the functions listed above are correct.

CLE2005 Invalid POSIX identifier.

Explanation: The IInvalidParameter exception
indicates that the POSIX locale identifier specified in
ILocaleKey operations is incorrect.

User Response: Make sure that the locale identifier
specified in ILocaleKey operations are correct.

CLE2009 Invalid look-up strategy.

Explanation: The IInvalidParameter exception is
thrown to indicate that the look-up strategy parameter is
invalid.

User Response: Check the lookup strategy value for
a locale key display name parameter specified in
displayName(). Valid lookup strategy values are:
kExactLocale, kExactLanguage, or kAnyLanguage.

CLE2010 No locale path specified.

Explanation: The IInvalidRequest exception indicates
that the LOCPATH environmental variable was not set.

User Response: Please specify the HFS directory
from which to load locale object files in the LOCPATH
environmental variable.

Chapter 5. z/OS C/C++ Application Support Class Library and Collection Class Library Version 5 Messages 187

CLE2011 No locales installed.

Explanation: The IInvalidRequest exception indicates
that the ILocaleKeyIterator was not instantiated using
the POSIX interface and the LOCPATH environmental
variable was not specified.

User Response: Make sure that the LOCPATH
environmental variable points to the proper HFS
directory from which to load locale object files.

CLE2100 Invalid advancing request for collation
iterator.

Explanation: The IInvalidRequest exception indicates
that the last collation object has been consumed and
that advancing to the next collation table cannot be
performed.

User Response: Avoid advancing collation iterator
past the limit by using the ++ operator in
ICollationIterator.

CLE2101 Incorrect text iterators.

Explanation: The IInvalidParameter exception is
thrown because the provided text iterator whose offset
is at the end of the string is greater than the text iterator
whose offset is at the beginning of the string.

User Response: Check the text iterators provided in
ICollation classes member functions such as compare(),
hash() or transform() and make sure that the iterator
whose offset is at the beginning of the string is less
than the iterator whose offset is at the end of the string.

CLE2102 Incorrect text offsets.

Explanation: The IInvalidParameter exception
indicates that the provided text offset for the end of the
string is less than the text offset for the beginning of the
string.

User Response: Check the text offsets provided in
hash() or compare() functions of ICollation classes and
make sure that the end of string offset is greater than
the beginning of string offset.

CLE2103 Unknown system error occurs when
calling wcsxfrm().

Explanation: The IInvalidRequest exception is thrown
while transforming a wide character string.

User Response: Check for proper string usage in the
ICollation::transform() function.

CLE2200 An attempt was made to dereference a
null IReference.

Explanation: The IInvalidRequest exception was
thrown because a null IReference pointer was used with
a * operator or -> operator.

User Response: Check the usage of IReference
pointers and make sure they are not null if
dereferenced.

CLE3000 A child already exists.

Explanation: A child already exists at the given
position.

User Response: Make sure there is no child at the
position where you want to add one, for example, in
routines such as addAsChild(), attachAsChild(), and
attachSubtreeAsChild().

CLE3001 The collection is empty.

Explanation: The collection used in the application is
empty.

User Response: Check your program to ensure that
you added at least one element to the collection.

CLE3002 The cursor is not contained in this
collection.

Explanation: The element corresponding to the cursor
might have been removed from the collection.

User Response: Check your program to ensure that
the cursor used in collection routines points to an
element of the collection.

CLE3003 The cursor is not for the given
collection.

Explanation: The cursor does not belong to the given
collection.

User Response: Check your program to ensure that
the cursor used in collection routines points to an
element belonging to the given collection.

CLE3004 The cursor is not for this collection.

Explanation: The cursor does not belong to the
collection to which the collection member function
issuing this message is applied.

User Response: Check your program to ensure that
the cursor used in collection functions is valid for the
collection that each function is applied to.

CLE3005 An identical collection was specified.

Explanation: The addAllFrom() function was called
with the same source collection as the target collection.

User Response: Check your program to ensure that
the collections are different.

188 z/OS V1R2.0 C/C++ Messages

CLE3006 An invalid cursor was specified.

Explanation: The cursor used in collection routines
points to an invalid position. There is no collection
element at the position specified by the cursor.

User Response: Check your program to ensure that
the cursor points to a valid collection element position.

CLE3007 An invalid position was specified.

Explanation: The position specified with a function
applied to a collection is invalid for this collection.

User Response: Check your program to ensure that
the position is valid for the collection you want to apply
the function to.

CLE3008 An invalid replacement was specified.

Explanation: During a collection replaceAt() function,
the replacing element had different positioning
properties than the element to be replaced.

User Response: Check your program to ensure that
the replacing element has the same positioning
properties as the element the cursor points to.

CLE3009 A key already exists.

Explanation: A function attempted to add an element
to a map or sorted map that already has a different
element with the same key.

User Response: Check your program to ensure that
the key of the element to be added is different from all
existing keys of the elements of the map.

CLE3010 The collection does not contain a key.

Explanation: The collection function elementWithKey()
was applied to a collection that does not contain an
element with the specified key.

User Response: Check your program to ensure that
the collection contains an element with the given key.

CLE3011 This collection is unbounded.

Explanation: The collection function
maxNumberOfElements() was applied to a collection
that is not bounded.

User Response: Check your program to ensure that
the collection is bounded or do not apply the function
maxNumberOfElements() to it.

CLE3012 The system is out of memory for
collection elements.

Explanation: A function could not obtain the space
that it requires.

User Response: Check that the system resources
offer enough memory.

CLE3013 A root already exists.

Explanation: A collection function was called for a tree
that already has a root.

User Response: Check your program to ensure that
the root does not yet exist in your tree.

CLE3014 A cyclic child attachment occurred.

Explanation: A user program tried to attach a subtree
to one of its own children.

User Response: Check your program to ensure that
you do not try to attach a subtree to one of its own
children.

CLE3015 An internal mutex error occurred.

Explanation: You tried to create a Guard and there
are no more mutexes available.

User Response: Check the operating system
environment parameters. If possible, increase the
number of potential concurrent threads or mutexes.

CLE3016 An internal lock error occurred.

Explanation: An error occurred during an internal lock
call.

User Response: Check the system environment and
reduce the number of threads if possible. Rerun the
application.

CLE3017 A time-out occurred.

Explanation: A Guard was requested with a specified
time-out value. The internal lock request was not
successful.

User Response: Check your application locking
sequence, check if all Guard destructors are called, or
try to increase the time-out value. Rerun the application.

CLE3018 An internal unlock error occurred.

Explanation: An error occurred during an internal
unlock call. The internal lock request was not
successful.

User Response: Check the system environment and
reduce the number of threads if possible. Rerun the
application.

Chapter 5. z/OS C/C++ Application Support Class Library and Collection Class Library Version 5 Messages 189

CLE3019 Invalid stream data.

Explanation: The data on the stream is not in the
expected format.

User Response: Make sure that the collection stream
contains valid data.

CLE3020 Invalid stream helper object.

Explanation: The collection stream helper object is
invalid.

User Response: Make sure that the collection stream
contains valid data.

CLE3021 The collection is full.

Explanation: The IFullException exception indicates
that a function tried to add an element to a bounded
collection that was already full. Functions that might
cause this exception include add() and addAsFirst().

User Response: Make sure that the application is not
trying to add elements to bounded collections that are
full.

CLE3022 The collection is not empty.

Explanation: The INotEmptyException exception
indicates that a collection operation could not be
performed on a collection because the collection is not
empty.

User Response: Make sure that the collection is
empty, as required.

190 z/OS V1R2.0 C/C++ Messages

Chapter 6. z/OS C/C++ USL I/O Stream Class and USL
Complex Mathematics Class Library Version 3 Messages

This chapter contains information about the Version 3 USL I/O Stream Class Library
and USL Complex Mathematics Class Library messages that are included with z/OS
V1R2 IBM Open Class and should not be used as programming interface
information.

The following information shows the format of these messages:

Message Format: CLBnnnn text <&n> where:

nnnn error message number

text message which appears on the screen

CLB9000 An attempt to allocate memory has
failed.

Explanation: The attempt to obtain memory in order
to satisfy the current library request has failed. It cannot
be performed on a collection because the collection is
not empty.

User Response: Run the program in a larger region
or use the HEAP(,,FREE) run-time option instead of the
HEAP(,,KEEP) option.

System Action: The requested function will fail.

CLB9001 IOStreams do not support Record
Mode I/O.

Explanation: The application is attempting to initialize
an IOStreams object to perform Record Mode I/O.
IOStream objects do not support Record Mode input
and output.

User Response: Remove the ″type=record″
specification from the constructor or open() function call.

System Action: The attempt to initialize the object
failed. The program continues to execute.

CLB9002 Too many characters.

Explanation: The application called the form() function
with a format specifier string that caused form() to write
past the end of the format buffer. form() is an obsolete
interface provided in stream.h for compatibility with old
code.

User Response: Split the call to the form() function
into two or more calls.

System Action: Execution is stopped.

CLB9003 There was a singularity; the application
could not take the log of (0.0, 0.0).

Explanation: The application is attempting to take the
log of (0.0, 0.0).

User Response: Correct the value passed to the log()
function and resubmit.

System Action: Execution is stopped.

CLB9004 The attempt to release the mutex
handle failed.

Explanation: There was an internal error:
pthread_mutex_destroy() failed.

User Response: Note the return code and error
number to identify the cause of the problem and inform
IBM C++ Service and Support.

System Action: Execution is stopped.

CLB9005 The attempt to lock the mutex handle
failed.

Explanation: There was an internal error:
pthread_mutex_lock() failed.

User Response: Note the return code and error
number to identify the cause of the problem and inform
IBM C++ Service and Support.

System Action: Execution is stopped.

CLB9006 The attempt to unlock the mutex
handle failed.

Explanation: Internal error: pthread_mutex_unlock()
failed.

User Response: Note the return code and error
number to identify the cause of the problem and inform
IBM C++ Service and Support.

System Action: Execution is stopped.

© Copyright IBM Corp. 1996, 2001 191

192 z/OS V1R2.0 C/C++ Messages

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OR CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2001 193

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on the z/OS operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the
customer to write z/OS C/C++ programs.

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States or other countries or both:

AFP AIX AT
BookManager BookMaster C/370
C/MVS CICS CICS/ESA
CT DB2 DB2 Universal Database

194 z/OS V1R2.0 C/C++ Messages

DFSMS DFSMS/MVS DRDA
GDDM Hiperspace IBM
IBMLink IMS IMS/ESA
Language Environment Library Reader MVS
MVS/DFP MVS/ESA Open Class
OpenEdition OS/2 OS/390
OS/400 QMF RACF
Resource Link SOM S/370
S/390 SP System Object Model
VisualAge VM/ESA VSE/ESA
z/OS zSeries 400

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the U.S. and/or other countries.

UNIX is a registered trademark of The Open Group in the U.S. and/or other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the U.S. and/or other countries.

Other company, product, and service names may be trademarks or service marks
of others.

Standards
Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:
System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

For more information on IEEE, visit their web site at http://www.ieee.org/.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains ISO and IEC. For more
information on ISO, visit their web site at http://www.iso.ch/.

Notices 195

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the X/Open
Company Ltd, UK. For more information, visit http://www.opengroup.org/.

196 z/OS V1R2.0 C/C++ Messages

Bibliography

This bibliography lists the publications for IBM products that are related to the z/OS
C/C++ product. It includes publications covering the application programming task.
The bibliography is not a comprehensive list of the publications for these products,
however, it should be adequate for most z/OS C/C++ users. Refer to z/OS
Information Roadmap, SA22-7500, for a complete list of publications belonging to
the z/OS product.

Related publications not listed in this section can be found on the IBM Online
Library Omnibus Edition MVS Collection, SK2T-0710, the z/OS Collection,
SK3T-4269, or on a tape available with z/OS.

z/OS
v z/OS Introduction and Release Guide, GA22-7502

v z/OS Planning for Installation, GA22-7504

v z/OS Summary of Message Changes, SA22-7505

v z/OS Information Roadmap, SA22-7500

z/OS C/C++
v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ User’s Guide, SC09-4767

v C/C++ Language Reference, SC09-4815

v z/OS C/C++ Messages, GC09-4819

v z/OS C/C++ Run-Time Library Reference, SA22-7821

v z/OS C Curses, SA22-7820

v z/OS C/C++ Compiler and Run-Time Migration Guide, GC09-4913

v IBM Open Class Library User’s Guide, SC09-4811

v IBM Open Class Library Reference, SC09-4812

v Debug Tool User’s Guide and Reference, SC09-2137

v Standard C++ Library Reference, which is available at:
http://www.ibm.com/software/ad/c390/czos/czosdocs.html

z/OS Language Environment
v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

v z/OS Language Environment Run-Time Migration Guide, GA22-7565

v z/OS Language Environment Writing Interlanguage Applications, SA22-7563

v z/OS Language Environment Run-Time Messages, SA22-7566

Assembler
v HLASM Language Reference, SC26-4940

v HLASM Programmer’s Guide, SC26-4941

© Copyright IBM Corp. 1996, 2001 197

COBOL
v COBOL for OS/390 & VM Compiler and Run-Time Migration Guide, GC26-4764

v COBOL for OS/390 & VM Programming Guide, SC26-9049

v COBOL for OS/390 & VM Language Reference, SC26-9046

v COBOL for OS/390 & VM Diagnosis Guide, GC26-9047

v COBOL for OS/390 & VM Licensed Program Specifications, GC26-9044

v COBOL for OS/390 & VM Customization under OS/390, GC26-9045

v COBOL Millenium Language Extensions Guide, GC26-9266

PL/I
v VisualAge PL/I Language Reference, SC26-9476

v PL/I for MVS & VM Language Reference, SC26-3114

v PL/I for MVS & VM Programming Guide, SC26-3113

v PL/I for MVS & VM Compiler and Run-Time Migration Guide, SC26-3118

VS FORTRAN
v Language and Library Reference, SC26-4221

v Programming Guide, SC26-4222

CICS
v CICS Application Programming Guide, SC34-5702

v CICS Application Programming Reference, SC34-5703

v CICS Distributed Transaction Programming Guide, SC34-5708

v CICS Front End Programming Interface User’s Guide, SC34-5710

v CICS Messages and Codes, GC33-5716

v CICS Resource Definition Guide, SC34-5722

v CICS System Definition Guide, SC34-5725

v CICS System Programming Reference, SC34-5726

v CICS User’s Handbook, SX33-6116

v CICS Family: Client/Server Programming, SC34-1435

v CICS Transaction Server for OS/390 Migration Guide, GC34-5699

v CICS Transaction Server for OS/390 Release Guide, GC34-5701

v CICS Transaction Server for OS/390: Planning for Installation, GC34-5700

DB2
v DB2 Administration Guide, SC26-9931

v DB2 Application Programming and SQL Guide, SC26-9933

v DB2 ODBC Guide and Reference, GC26-9941

v DB2 Command Reference, SC26-9934

v DB2 Data Sharing: Planning and Administration, SC26-9935

v DB2 Installation Guide, GC26-9936

v DB2 Messages and Codes, GC26-9940

v DB2 Reference for Remote DRDA Requesters and Servers, SC26-9942

v DB2 SQL Reference, SC26-9944

198 z/OS V1R2.0 C/C++ Messages

v DB2 Utility Guide and Reference, SC26-9945

IMS/ESA
v IMS/ESA Application Programming: Design Guide, SC26-8728

v IMS/ESA Application Programming: Transaction Manager, SC26-8729

v IMS/ESA Application Programming: Database Manager, SC26-8727

v IMS/ESA Application Programming: EXEC DLI Commands for CICS and IMS,
SC26-8726

QMF
v Introducing QMF, GC26-9576

v Using QMF, SC26-9578

v Developing QMF Applications, SC26-9579

v Reference, SC26-9577

v Installing and Managing QMF on MVS, SC26-9575

v Messages and Codes, SC26-9580

DFSMS
v z/OS DFSMS Introduction, SC26-7397

v z/OS DFSMS: Managing Catalogs, SC26-7409

v z/OS DFSMS: Using Data Sets, SC26-7410

v z/OS DFSMS Macro Instructions for Data Sets, SC26-7408

v z/OS DFSMS Access Method Services, SC26-7394

v z/OS DFSMS Program Management, SC27-1130

Bibliography 199

200 z/OS V1R2.0 C/C++ Messages

INDEX

A
Application Support and Collection Class Libraries

messages 181

B
BookManager books 6

C
compiler

error messages 31
return codes 31

CXXFILT utility
error messages 178
return codes 178

D
dbx 24
Debug Tool 19
debugging

dbx 24
Debug Tool 19

DLLRNAME utility
error messages 177
return codes 177

DSECT utility
error messages 175
return codes 175

E
EDCnnnn messages 31
error messages

Application Support Class Library and Collection
Class Library 181

compiler 31
utility 175
z/OS C/C++ USL I/O Stream Class and USL

Complex Mathematics Class Libraries 191
examples

machine-readable 7
naming of 7
softcopy 7

M
messages

Application Support Class Library and Collection
Class Library 181

compiler 31
utility 175
z/OS C/C++ USL I/O Stream Class and USL

Complex Mathematics Class Libraries 191

N
Notices 193

P
PDF books 6

R
return codes

compiler 31
CXXFILT utility 178
DLLRNAME utility 177
DSECT utility 175

U
USL 18
utilities

CXXFILT 178
DLLRNAME 177
DSECT 175

Z
z/OS C/C++ USL I/O Stream Class and USL Complex

Mathematics Class Library Version 3 Messages 191

© Copyright IBM Corp. 1996, 2001 201

202 z/OS V1R2.0 C/C++ Messages

����

Program Number: 5694-A01

Printed in the United States of America

GC09-4819-00

	Contents
	Chapter 1. About This Book
	z/OS C/C++ and Related Publications
	Hardcopy Books
	Softcopy Books
	Softcopy Examples
	z/OS C/C++ on the World Wide Web
	Where to find more information
	Accessing licensed books on the Web
	Using LookAt to look up message explanations

	Chapter 2. About IBM z/OS C/C++
	Changes for z/OS V1R2
	Limitations of Enhanced ASCII
	z/OS Language Environment Downward Compatibility

	The C/C++ Compilers
	The C Language
	The C++ Language
	Common Features of the z/OS C and C++ Compilers
	z/OS C Compiler Specific Features
	z/OS C++ Compiler Specific Features

	Class Libraries
	IBM Open Class Library Source

	Utilities
	The Debug Tool
	IBM C/C++ Productivity Tools for OS/390
	z/OS Language Environment
	About Prelinking, Linking, and Binding
	Notes on the Prelinking Process
	File Format Considerations
	The Program Management Binder

	z/OS UNIX System Services (z/OS UNIX)
	z/OS C/C++ Applications with z/OS UNIX C/C++ Functions
	Input and Output
	I/O Interfaces
	File Types
	Additional I/O Features

	The System Programming C Facility
	Interaction with Other IBM Products
	Additional Features of z/OS C/C++

	Chapter 3. z/OS C/C++ Compiler Return Codes and Messages
	Return Codes
	Compiler Messages

	Chapter 4. Utility Messages
	Other Return Codes and Messages
	DSECT Utility Messages
	Return Codes
	Messages

	DLLRNAME Utility Messages
	Return Codes
	Messages

	CXXFILT Utility Messages
	Return Codes
	Messages

	Chapter 5. z/OS C/C++ Application Support Class Library and Collection Class Library Version 5 Messages
	Chapter 6. z/OS C/C++ USL I/O Stream Class and USL Complex Mathematics Class Library Version 3 Messages
	Notices
	Programming Interface Information
	Trademarks
	Standards

	Bibliography
	z/OS
	z/OS C/C++
	z/OS Language Environment
	Assembler
	COBOL
	PL/I
	VS FORTRAN
	CICS
	DB2
	IMS/ESA
	QMF
	DFSMS

	INDEX

